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Notations and Terminology

Notations :

A equality by definition

~ approximately equals

= identical to

. scalar product of vectors

A vector product

O convolution product

€ substitution

> thus, hence, consequently

0 belonging to

|| absolute value, modulus or lacking a dimension éddmg on
context)

[ ] dimension or unit (measurement theory)

e energy

S visual space

t time

] imaginary unit

f frequency

v speed

u unit, unless there is an indication to the cogtra

u unitary vector

X vector radius of the original space :
X =x1U;(0=212..N)

0  Nabla operator :0 A 6% U ; (i=1,2,..,N)

I

d(X) DIRAC function at the origin of coordinates :
O(X) = d(x1) 6(x2) ... O(Xn)



Written conventions :

* The norm of a vectoV is writtenv.
« The modulus of a complex value (z) is notediak

Abbreviations :

(En) n" stated
(Pn) n" postulate

Terminology :

Visual space space accessible to viewing.

Free space the part of visual space that contains no forde .fie
Universal space the spatial model of the universe.

Metric space space of a single nature.

Affine space: space of a multiple nature.

Order of space the number of its dimensions.
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INTRODUCTION

The revelation behind this essay goes back to da 976
when | prepared the end-of-year paper for my studie¢he Technical
University of Istanbul. The theme was "The studytlué system of
units”, physical in general, electrical in partaul | took the
opportunity to review the broad outlines of physigsorder to ask
myself the following question : why are the measweat dimensions
(base quantities) different from the spatial dimens ?

| discovered the answer to this question long eeftarting to
expound on it, a task | began in the autumn of 19%bvered the
development of mechanics, starting with GALILEO adBWTON,
cosmology starting with COPERNICUS, via the greatding blocks
on which modern physics is based.

During ten years of uncertain, sporadic work, vegynote
from the world of science, | did my research, withonaking prior
assumptions and in complete tranquillity, into fimality of principles
and how they were matched by experiments. In sumpmar
established that the GALILEO - NEWTON basics argext and that
certain rather far-fetched theories, such as xétatiand the
BIG BANG, are fleeting.

This memorandum is based on three consecutive ideas

 That the universe consists of three primamngtures
(elements) : energy, space and time.

» That these natures cover every possible thefsom that of
measurement to that of spatial models.

» Consequently, the equations of physics lack one

independent variable : that of energy.

Before tackling the content of these ideas, itnpartant to
state that :

* "The fifth dimension" was the title assigned tosthvork
from the beginning and it remains unchanged.



* This account is aimed especially at readers whdaniliar
with theoretical physics.

* The original version of the main text (the thid®pters)
has been retained, with the exception of a few tdam or
brief passages from which it was essential to quote

* The themes tackled are presented in a uniqueofasind
are considered to be superior on an academic laeelge
the absence of a bibliography.

* The appendices include details of calculationmm&anda
and a few illustrative examples.

The first chapter contains :

» the epistemology of this essay, the physical itgcture of
the universe and its geometrical model ;

» the new system of measurement (quantities and)uamd a
terminological revision of the constants ;

» adescription of five-dimensional space.
The second chapter :

* deals in the classic manner (without any attempt
relativism) with the effect of acceleration ;

» condenses and criticises the theory of relativity

» offers a different interpretation of HUBBLE measment
and subsequently invalidates the BIG BANG theory ;

* proceeds to a dimensional analysis of MAXWELL'’s
equations ;

* proposes an analogy between gravity and eleeigoetism.



The third chapter develops a mathematical tool isting of :
 the digitisation of continuous variables ;

» the derivation and integration of digital funetso;

 the resolution of linear differential equations.

With respect to the appendices :

» The first is a schematic of the new system chsueement.

» The second explains the DOPPLER and the HUBBLE
Effects.

* The third is an addition to the "acceleratioreeft§".
» The fourth is a reasonable summary of :

o EINSTEIN'’s relativity (special and general) ;
> the mathematical concepts employed by relativity ;
o LORENTZ transformations.

» The fifth relates the MAXWELL equations.

 The sixth contains analogical and digital FOURIER
transforms.

Finally, this content consists of five statemefits postulates
and four propositions.



. THEORY



.1 Preliminaries

[.1.1 The Universe

Foundations :

Definitions :

1) The Universe consists of everything that exists
independently of human consciousness.

2) The natural orderis the set of rules that governs the
organisation of the Universe.

3) Absolute vacuumis the absence of any form of energy.
Comment :

A vacuum, in the usual sense, is a place thateimid of
matter and of a strong field. As we understandaiyacuum is the
region of space that has minimal intensity (to kednined) of
energy.

Postulates :

(P1) The human faculty of abstraction is limited to
combinations of tangible objects.

Corollary :

The elementary mathematical concepts are, in essenc

physical.

(P2) The direction of abstraction is from the simple the
complex. Simplicity is natural, complexity needsle
justified.

Statements :

(E1) The subject of physics is the study of the obsdevahd
measurable structure of the universe.

(E2) Infinity is an indeterminate mathdival term
(@ax o =00, axo =0 for a# 0). It is consequently
excluded from physics.
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Postulates :

(P3) The universe is unique, continuous (without an hliso
vacuum), limitless (boundless), finite and orderdéd.
order is noumenal.

(P4) Man — body and mind — constitutes an infinitesimait
of the universe. He is consequently devoid of fikesilof
an absolute or comprehensive nature.

Comment :

Physics is the science of perception, both ratioaad
empirical. No theoretician, regardless of the opputy presented by
his ideas, can impose anything (a rule, behavioyproperty) upon
Nature. Nature is totally independent of our wodf thought. A
credible physicist always seeks to understand teral order in
terms of logic.

Primary natures :

Postulate :

(P5) The universe is the combination of a finite, soggaly
unknown, number of natures known as "primary", that
are noumenal, incomparable, independent and
inseparable. Each consists of an equally unknown
number of independent but comparable components.

Currently, only three natures have been revealed :
» Energy consisting of a single component ;

» Triple visual spaceconsisting of : the horizon, altitude and
depth ;

* The singletime component.
Areas of knowledge :

Four areas of knowledge have been defined :

» Absolute reality involving the whole universe, its natures
and their constituents ;
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» Hidden reality concerning unknown natures ;

* Metaphysics concerning the unknown components of

known natures ;

* Physics consisting of the known components of known

natures.

These areas are nested one within the other eirfalfowing
manner :

Absolute reality
of all the nature

Physics
natures and

known componentg

Hidden reality
unknown natures

Metaphysics
unknown components

of known natures

(Fig. 1.1)

Comment :

Human knowledge belongs in the two inner rings §its/and
metaphysics).
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Thought :

The magnificent architecture of the universe, Afed human
intellect could not have occurred accidentally srthe result of a
chaotic process. Another nature, currently unimgiglle, manifests
itself through this strange signature. This theioryno way supports
theological theory or its metaphysical correlations

|.1.2 Universal space

Structure :

By assigning a dimension to each of the primarymest, three-
dimensional universal affined space (without thacept of distance)
is evoked, illustrated by :

Y
n

(Fig. 1.2)

In this space, the measurements of the coordinatesnot
comparable and the geometrical structures are emallile. By
substituting s for its habitual components (x, ), ane attains five-
dimensional space (e; x, v, z; t), the subjechaf &ccount.
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To convert affine space (e; s; t) into metric spé&es, S)
consisting of geometry and distance, the abstnaifitation of natures
becomes indispensable. The appropriate nature fification is
visual space. Time and energy are subsequentlyess@d in terms of
length.

The conversion formulae are the direct result af thtios
between the indivisible measurements of naturéd, As andAe,
known as a tribute as "PLANCK’s natural units". Tfuest two of
these units are known literally whereas the thiemnains to be
revealedsee § 1.2.2)

The corresponding ratios and formulae are written :

Aeéa’At C = s=ae ; s=ct (1.2)
The triplet of (Fig. 1.2) thus becomes :
ct
0 - S
ae/
(Fig. 1.3)

It should be remembered that this (metric) spacenly a
conventional image of original space. In any casshould be stated
that the dimensions (or the variables of a functransposed in space)
of any space must be absolutely independent of ete.
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Geometry :

The first elements of so-called "classical” Eudidigeometry
are the point and the straight line. A successigpomts traces a line,
a series of lines traces an area and so on. Astshape, the curve is
defined by variation in the straightn€ssand divided into two
classes:

* a constant (circular) curve described by a poind @n

straight line ;

* a variable curve (regular or irregular) consigtof several
points and straight lines.

Furthermore, it is accepted without need for a destration
that every curve consists of a finite number ofreuted arcs.

Properties :

1) Curve geometry cannot accept straight lines. lomsy
tangible on the basis of an order of straight Be@metry
that is higher than its own.

2) Straight line geometry accepts any curve ofssér order
than its own.

In this context, and by virtue of the postulaB8); universal
space can only be curved and closed (limitlessfamite). Its curve,
according to the first of the above properties,ingerceptible.
Furthermore, the principles of independeni8) (and simplicity P2)
imply the homogeneity of primary natures and th#gaumity of their
growth. In mathematical terms, the geodesses A.4.4)0f natures are
circular (perfectly symmetrical). This fundamenpabperty of spatial
geometry is more easily understood through thewahg example :

(1) The corollary of the postulaté{) suggests several definitions of the straight
line. For example, the straight line is a lumindine crossing an empty region
or the radial support of an electric field in aerakntary charge placed in an
empty environment, etc ...
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Let there be a closed surface (a two-dimensionacep
containing a physical state that is initially frgalistributed such as
heat or an electrical charge. The only geometrnyablgpof satisfying
the requirement for homogeneity of this distribntiis the constant
curve.

Furthermore, the correspondence (unity and corrkrt)
between natures imposes the equality of their ggodgrcles. This
produces the sphericity of universal space as d¢rdoesd into the
above statement.

Statement :

(E3) The geometrical properties of universal space are
identical in every respect.
Comment :

1) Universal space is empty, any physical state aomadteing
merely a geometric structure combining three ptaes
relative to the primary natures, gpatial projection
analogous to the "container”, aenergetic projection
similar to the "content” andtamporal projection recalling
the age.

2) On a human scale of observation and measurement,
universal space is Euclidian.
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.2 Quantity and measurements

|.2.1 Base quantities

"Physical quantity" is the term applied to any eajthat is
quantifiable in nature. These quantities are ddidmto two
categories :

* base quantities that are irreducible and defined in
themselves ;

» derivative quantitiesare composed of base quantities and
defined by their initial formulae.

The constants produce a particular case : theyharaltimate
values of ratios or experimental data.

Dimensions and modes :

Each fundamental quantity is assigned a capitirl&nown as
the "dimension”. The dimensional attribute of aidsive quantity
indicates its physical composition. The constaetsulting from the
experiment are given weighted dimensions.

For reasons of consistency and subtlety, it is adgidea to
introduce a new criterion for quantities. The "mbdienoted M, is
the extensive (& 0), intensive (< 0) or neutral (n = 0) natuféof a
guantity; n being the sum of the powers of the disi@nal attribute
(see A.1.2) Note that a quantitative quantity (with a noneséve
dimension) is by definition extensive, the primamgtures thereof
constituting the example.

Statement :

(E4) The way in which the laws of physics are formulate
must satisfy modal equality minus the constants.

(1) When this terminology is applied to thermodynamicshanges its meaning.
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Current quantities :

"Non-relativist” physics contains seven base qtiaat
(see A1.1)

» three of mechanical origin : length (s), mas$ &md time (t),
dimensioned [S], [M] and [T] respectively ;

« four of them originating from a particular brafithof
physics : the electrical charge (q dimensioned asfdp
electricity, temperatured(dim. ©) for heat, etc ...

Quantities proposed : (see A.1.2)

The central idea of this account is the unificataf primary
natures and fundamental quantities, in other wotkds, merger of
spatial dimensions and of measurement. This protEesis to the
harmonisation of the vital concepts of physics amhsequently
reduces the number of base quantities to threecoded (e) and
dimensioned [E] energy, length and time, and thglias to all of the
branches together.

This idea emerged as follows :

Energy being the quantity shared by all areas ofsieh, it
becomes a suitable substitute for the specific lwastity in each
discipline. In order to use it in this way, the qgtiaes must be
expressed as a function of (e; s; t) in the forneaudiality, identity or
equivalence. The quantities mentioned in this aectoare mass,
electrical charge and temperature. Note in pasiay temperature,
like all other intensive quantiti&§ cannot be fundamental.

The following stage consists in re-dimensioning @il the
derivative quantities in terms of EST. For thisgmse, the following
Statement has been postulated.

Statement :

(E5) Two sizes having the same action are measuretiein t
same way.

(1) Each branch is distinguished by its own fundamemiahtity.
(2) This type of size is derivative by definition.
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Mass : m
Mass is defined by EINSTEIN’s Theory of Relativésy :

E=mc2 = [m] = ES2T? (1.2)
Electrical charge : q

Definition formula :

To quote NEWTON's law : F= —eM2 (1.3a)
41y, s?

and that of COULOMB : Fo= — 1% (1.3b)
4re, s?

so let us consider two identical masses (m, nparsged by distance
(s) and having two equal electrical charges (qW¥f)at is the ratio in

which % the forcesFy and F, cancel each other out ?

From the laws (1.3), the following can be extrapeda:

€

Q= |- m (l.4a)
Yo
Since : vl 6.67256 10 [m%kg s?] and
Ty,
2 1 . 8987.10° [m® kg/C2 s?], resulting in :

TE,

q = 8.610425 10 m (1.4b)
Dimension :

Dimensional equality and the perfect analogy (teonterm)
between the laws (1.3) implies :m] = [q] and ] = [&] -

Corollary :

The formulae (1.2) and (I.4b) link electrical chartp energy
through :
E=0q ; El=S?T2 ; ¢~ 1.0452446 10°'[jIC]  (I.5)

making it possible to deduce therefrom that :
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« the indivisiblé" electrical charge in nature is :
Agq = 1.321-10°°[C] ;
 the electrostatic energy of the electron amounts to
1.6746796 10° [j] .

It is instructive to note that the electrical charng the most
concentrated form of energy known hitherto.

Temperature : @
The analogy between PLANCK'’s formula :
B=hf=1nw (1.6a)
and that of BOLTZMANN : =k 9 (1.6b)
induces : [k] = [h] = ETand [6] = [f] = T™. This last equality also
results from WIEN'’s law : = 1.034552- 10" 6 .

[.2.2 Units of measurement

The literature covers two series of units :
» a conventional series adapted for human usage ;

» another so-called "natural" series consisting oARRCK'’s
measurements.

Conventional units :

The majority of authors use the International 8ysof Units
that covers the seven fundamental quantities quiotgd.1.1). Our
model (see A.1.2) which refers to new fundamental quantities,
comprises three units : [jms] for joules, metresd aseconds.
Consequently, the unitary equivalents of the olchdamental
guantities are printed as :

1) This charge comes from the unit of hdgt €ee the next paragraph. Likewise,
the elementary mass can be deductén~ 1.5341< 10 [kg] .
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1 kg = 910" [js2/m?] for mass, 1 G 1.04256< 10°" [js#m?] for
electrical charge and 1 °K 2.08365<10'°[1/s] for temperatuf&.

Proposition :
Starting from an intrinsically defined "second'js advisable
to have a "metre" that corresponds very precisely + 3« 16° [m/s].

This having been done, it can continue to be statddcertainty that :
-9
€ = %T [F/m] for a value of, A 411107 [H/m] already agreed.
This measurement appears to be simultaneouslyecoe,
accurate and consistent.

Natural units

These are the measuremenfe, As and At defined as
follows :

At A /"ZC—E ~ 5.39-10%[s] ; As A cAt ~ 1.616-10%°[m] (1.7a)

As for Ae, which is currently unknown, it is perceived as
follows :

A process is known as "periodical” if it is repshtat regular
intervals in the direction of its development. Suxhprocess must
consist of at least two successive periods andefined over a
technically whole period known as the “principalripd”. The
frequency (f) thus designates the number of pertmigained in the
unit of measurement (a second, in the case of time)

In this context, PLANCK’s formula (I.6a) would aggr to
show the following :

1) The energy of a period corresponds to :
f=1[Hz] & E@)=|h]|]

(1) The round figures ol C =~ 10?7’ [js¥m?] and 1 °K =~ 2+ 10" [1/s] are tolerable.



21

2) This energy is independent of the frequency and is
indivisible and thus unitary :

Ne ~ 6.626<10°*j] (1.7b)

3) The "quantum" of an electromagnetic wave (or anyeva
that propagates itself at the speed of light) ctutes the
sum of the energy of f periods; f obviously représea
whole number.

In order to release f from the constraint of besgvhole
number and rendering PLANCK'’s formula (1.6a) moonsistent, the
following equation is proposed :

b =hf[j/s] ; hADde; (1.8a)
% being PLANCK’s radiation intensity.
By analogy, BOLTZMANN's radiation intensity is :

Js =kO[j/s] ; kA |K]|[] (unitof heat) (1.8b
This unit characterizes the least action defined by

kAt ~ 7.442<10° [js]
Corollary :
An electromagnetic (or gravitational) wave is nobgagated
in space (e; s; t) except as a multiple of itsqukri
Comment :

1) Discrete measurement (in PLANCK units) of spatiaé$
does not contradict their continuity. These units bke
sliding segments on the geodesics.

2) Quanta and photons, as perceived by PLANCK and
EINSTEIN, do not exist. Any radiation, whether inse or
otherwise, follows in the wake dfe.
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[.2.3 Constants

Constants are only superficially expressed in itieegture. Out
of a concern for accuracy, here are the redefimstio

number, any constant having no dimension (value indepeinde

of the scale of measurement) ;

absolute constant, any constant without a mode ;

fundamental  constant, any  absolute, irreducible and

experimental constant ;

measurement, any other constant ;

measurement limit, any extreme measurement in nature ;

fundamental measurement, any irreducible and experimental

measurement.

In accordance with this terminology, current phgsionly
counts three fundamental constants correspondiag/ézuum :

Yo gravitational property (NEWTON'’s constant) ;

€ electrical property (absolute permittivity) ;

Mo magnetic property (absolute permeability).

The fundamental measurements consist of :

h unit of energy (PLANCK'’s modified measure) ;

Ho minimum frequency (HUBBLE’s measurement).

Comment :

Certain derived constants, such as c¢ and k, arelypoo
expressed in the documentation. It is useful talf¢bat :

c= ! ; k= %
€oMo
with : R~ 8.3144 [j/(mol.°K)], as the molar constant of petfgases ;
N =~ 6.02204 10?2 [1/mol], the AVOGADRO number.
New constants

The ratiosa = £5 ~ 2.4386333 10% [m/]] andbA £€ -

1.22934619666 10' [j/s] represent two maxima of radiation : the

first is the inverse of the longitudinal densityrafliation whereas the
second indicates its intensity.
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1.3 Five-dimensional Space

Original version :

Description :

Space (ae, s, ct) is five-dimensional and it i4, reantinuous,
universally spherical and locally Euclidian. Itstneis expressed on
the universal scale :

ds?= gpq (X4 X5, 3, X, X)) dXPdx? ; x* =ae; x> =ct (1.9a)
and ds2= a2de? + dx2 + dy? + dz2 + c2dt?2 on the local scale(1.9b)

Geometrical figures :

Each physical object can be identified by a unigeemetrical
body in space (ae, s, ct). Most authors confuspareal geometry
with spatial geometry. They are in the habit oihgsihe geometry of
the body they are considering as "measurement '‘spgacdescribe
"configuration spacé” or merely spac@ on its own.

Functions :

Any function originating from physics is of th&(e; s; t) type.
Its value at a given point {es; to) in space is uniqud.
Discrete version :

In terms of infinitesimal measurement (on the PLANC
scale), spatial lines are shown to be discrete.

(1) Let there be a dynamic system with n degrees etiben orq", ¢, ..., d, all of
these parameters describing the way such a systerlops. By assigning a
coordinate to each of these parameters, a configarspace of n dimensions is
created.

(2) This is the case with general relativity that tposes the geometry of
gravitational action into spatial geometry.

(3) This is not the case for a function(sf t).
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ct
As = c< At
L | S
o] As
As = a< Ae
ae (Fig. 1.4)

taking the elementary steps :
As =~ 1.62<10%°[m] ; At ~ 5.39<10%*[s] ; Ae =~ 6.63<10°*[j]
and the constants :€ 3<10° [m/s] ; a= 2.44- 107 [mlj]

It should be borne in mind that the indivisible tsniof
derivative extensive quantities are deduced dyedtbm their
definition formulae.

From another point of view, the digitisation of 8ph
coordinates on an infinitesimal scale is only pblpan the tenuous
world (at very low energy). Beyond this world, oresorts to the
sampling techniquésee 111.1.1)

Differential equations :

Equations in physics are generally differentiataio(functions
of spatial coordinates), non-linear and only reable in very special
cases. The introduction of energy as an independerdble in these
equations renders them linear. Consequently, thgitisdition
expanded upon in chapter (Ill), combined with FOBRIs analysis
(A.6), leads to the solving of such equations geregeral principle.



[I. SUPPLEMENTS
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1.1 Movement

Movement is quite rightly described as the motiomange in
spatial position) of one body in relation to anothkehe name "scene"
is given to the field of observation and the namegerential 0" to the
supposedly motionless body in the background oktieme.

Two types of movement are detectable :

* A so-called "free or independent” movement (bredion
or clock movement) of an origin external to thersceThis
type of movement contributes no information to shely.

* A movement, known as "dependent”, originatinghwitthe
scene, providing information.

Movement is characterised by direction and spegdthat
varies between immobility and the speed of light Tdis variation is

often expressed by the ra(i%).

I1.1.1 Light

Light is an electromagnetic wave consisting ofef
parameters : amplitude, phase, frequency, speeddaedtion of
propagation. The last three parameters are of prmpertance :

* Ffrequency : this very revealing shift is used in several areas
of physics ;

* speed: an electromagnetic characteristic of a vacuum and
an absolute constant, it classifies other speeds ;

* trajectory . according to EINSTEIN, describes spatial
geodesics.

Furthermore, experiments show that :
1) The speed of light is isotropic, limited and nordéige :

ctv=c ; v£#0
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2) Light interacts with other forms of energy

» movement . light loses or gains energy (its frequency
increases or decreases) when it leaves or encsunter
motion (the DOPPLER Effe¢see A.2.1);

» field (electromagnetic or gravitational) :

o light loses or gains energy when it leaves or
encounters a celestial body, the EINSTEIN Effect ;

o jt deviates when close to an astral body
(EINSTEIN’s proposition), the HUBBLE Shiftsee
A.2.2)is the result of this deviation.

[1.1.2 Effects of acceleration

The experimental data show that acceleration rfgradteration
to the state of energy in general) of a body changmme of its
physical properties, such as its mass and clo&’rathis change is
explained by :

2
State = {1—[uj } < State (I.1a)

wherev; andv; respectively represent the initial and final accien
speeds. If any of these speeds is nil, the ratiball becomes :

1
+=

Vv2) 2
State= (1—§j x State (I.1b)

Formulation :

In a complex plan, let us combine the speed obhila object
with that of light :

(1) One asks oneself whether other properties changearallel, the electrical
charge or the temperature for example.
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Fig. 11.1)

where :C A c exp(j¢) is a phasor rotating in the positive directidn o
the acceleration ;

o A (arcsin%) l [Og[

Then let us convert this "circle of speed" intoratary circle
of speed :

Im

Eig. 11.2)
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It will soon be realised that the ratiéC( = sin¢ evokes the

DOPPLEReffect and that :
\2

C_-tg¢ (11.2)
1- 2

R

produces the acceleration effect that can be atedlin various ways.

It should be emphasised that this effect is cutivelaand that

v
the substitution, in the basic formulae, ¥&f by —S— or quite
C 1\
CZ
simply :
ve VY (11.3)
ez
c?

which is perfectly acceptable without resorting &pace-time
relativity.

From the analytic point, the radial projection wfon the
tangent to the circle at the resting point (P) pioes :

Im Y

Fig. 11.3)
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"Tangential speed” (or effective speed) is the ttarVv
defined by :
v Vv -
VA T > C tgd
CZ

playing the same role asin the traditional formulae of movement.

11.1.3 Kinetic Applications

Kinetics is the study of movement solely in redatito (s; t).
The kinetic effect of acceleration is manifestedvilo typical cases :
the composition of dependent spé€@md the slowing of clocks.

Composition of speefk

Let us consider a cascade (i = 1, 2, ..., n) @kdnchical
movements (each referring to the previous oney, straight line and
unidirectional. "Actual speed", denoted s is the name given to the
speed of theé® body in relation to (i-IJ; v1 thus designates the speed
of the first body in relation to the scene as @nefice point 0. This
having been done, let us ask the following question

What is the "residual" speed between two cascabloties of
any kind, especially the last in relation to therse ?

The answer has already been provided in the (&t&). If v is
the speed of the™ body in relation to the scene :

tgd = > tgdi ; & = arcsin% = v=csing

(1) An example illustrating independent velocitiesiisypded in (A.3.1).
(2) Scalar composition of uniform velocities, easilyendable to vectorial cases.



31

This formula upsets the famous "law of compositiBrf two
velocities that is heavily promoted in the literatu

Slowing of clocks :

Experiments show that acceleration or exposure tstrang field
(gravitational or magnetic) slows the movement lotks. Take two
references of explorers {Rnd R) equipped with two identical clocks
and placed on a straight and graduated line obmcAt the outset, the
two explorers coincide in space (s; t) and agreavddk together to
conduct the following experiment :

From the moment {t= t; = 0), R leaves R at a constant (v)
raised speed, after an agreed period of time has elapsed 8, t
distance (s) that separates him frétnis represented as follows :

R]_ RZ
V-
e
S
(Fig. 11.4)

(1) According to this "law", the ratio‘é is comparable (or equal to) ¢hwith :

_ _ th¢.+tho, - VitV
=01+, > th@.+¢,)= —1+th¢1th¢2 e 2 LV,
CZ

For our part, we accept tha% =sing and tgh =tgd; +tgd,.

(2) Virtually instantaneous acceleration is assilime
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The immediate application of the first e law afiddics (s = vt)
isgivenforRand R: s =vt; and g = vt, respectively, but the
pick-up of s by R, invalidates the calculation and renders suspect
one of the three parameters used : s, v or t. Snsenvariable and v
is the initial data, the error can only originatenfi the measurement
oftime: =t ; t#t.

In order to make the calculation match the expemm&,
resorts to a replacement (11.3) :

$ = VZXbéVb

Ve
e

Enabling him to match his time scale to that af: R

V. t=vt, > =2 (11.4)
1- V2 1- V2
2 2

This is the equivalence of the measurement of tieieveen
two reference points, one moving in a manner degenoin the other.
The same result will be reproduced if the experimsmreproduced
over an agreed distance (s) and a comparable pick-u, andt; .

Time scales :

The result of the previous paragraph is that eatbrence
point (whether in motion or not) has its own tinoale (the clock and
its mechanism) and the dependent movements caysndince on
the scales.

Let us consider a sequence of dependent cosmic nrents
starting from the reference point 0 (presumed tambenitial resting
state) and moving towards a reference point inonadit a speed close
to c. It can be assumed that the clock 0 movesaatmum speed even
though it has virtually stopped. If this is the eathe formula (11.4)
can be extended to any pair of consecutive movesnent
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2
tn+]_ = tn 1'(hj , (”5)

C

Vn+1 being the speed of R inrelation to R.
In fact, it should be remembered that this sequerficgcales
terminates in the minimaAf) and maxima(Hi) of our own time
[0}

scale.

Units of time :

Take two reference points {Rand R) using the same
technique (clock and definition of a unit) for medsg time. The
animation of R in relation to R generates a difference of scales
represented by the ratio (11.4) :

= _\V2
W= U .1 % (11.6)
where 4 and y are the units of measurement in relation {caRd
R»>. The result is that one second on the scale;ofdRresponds to
1-V@2 seconds on the scale of RNote that the difference in scale

changes the values of those constants having adimension, the
speed of light for example.

Shift of scales :

The spectral shift is caused by the difference alescbetween
the two units of electromagnetic transmission, beéng mobile in

relation to the other (Fig. I1.4). The period ¥ fi emitted by R

1

reaches Rin the form of §= fi This shift is caused by virtue of
2

(11.4) at :
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fy

_ (11.7)
l1.V°
CZ

It should be added that this ratio remains vadigardless of
the direction of transmission betweery, Bnd R, the type of
movement (dependent or free if the ratio betweerstiales is known)
and the direction of movement (approaching or riexgd

Similarly to the DOPPLER shift, this produces :

' ﬂ _fz['ﬁ]

Besides, it is possible to combine (couple) stoftshe same
type (spectral for example).

T, =T 1-V§2 -> f25

Af A Tfe- ;0= 5 - fl—fl[

Coupling the shifts : DOPPLER and scales

From the diagram (Fig. 1.4), four modes of tramssion can
be extrapolated relative to the direction of movemand the
permutation of the emission/reception betweenaRd R :

Case of receding movement :
1) R transmitter, R receiver; f € f. ; §, € f

The frequency f reaches R having undergone two
effects :

0 the DOPPLER Effect which converts it intof (1—%)

and then
O the scalar effect (11.7) which brings it to :

2) R transmitter, R receiver; f € f, ; f, € f
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The frequency (f subject to the shift in scales leavesvigth
the DOPPLER effect to become :

f = fo . [1- V2 < (1- V)

Case of approaching movement :

Through a consideration comparable to the prevamses it is
found that :

1+¥
1) for R transmitter, R receiver ;

f=fe L v
C

2) for R transmitter, R receiver ; f

= f, 1'VFZ < (1+%)
Critical speed :

The results of coupling show that :

in a case of receding movement,id always less than, f

* in a case of approaching movement and for the R
transmitter, f is always greater than .f
The only case in which the two shifts (DOPPLER andlar)

may cancel each other out & fo) is that of "approaching the;R
transmitter”. Consequently :

Vv

~ .7709169971=>

v =~ 2.312751 10° [m/s] A v. (critical speed).

This value, applied to the schematic (Fig. lIr@presents
¢ =~ .88 [rad] = 50.43631 [°].
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11.1.4 Dynamic Applications
Dynamics is the study of movement on the basis(ef s; t).
NEWTON was the first to formulate the first lawafnamics :

F=m % ; My being the static mass of the mobile object.

The validity of this law is restricted to low ateetion. In the
general case, the replacement (11.3) is required :

3

—med( v - _V 2 dv

F=m, dt R mo(l czj at
CZ

The first implications of this law affect impulsad kinetic
energy(see the calculation in A.3.2)

Impulse (quantity of movement) :

t
Definition formula JA J. F dt
0
Ordinary expression - J=myvV
Generalised expression . J=mg v
1. \2
(o2

. . . . . m :
It is plausible to directly substitute ,mwith —2— in the

.V
c2

ordinary expression in order to obtain the gensedliexpression. The
latter includes the increase in mass caused byexatien :
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mO
V2

1-—
CZ

m = (dynamic mass).

Kinetic energy.

S
Definition formula E. A _[ F ds
0
Ordinary expression : E = %mo V2
Generalised expression: E. = mg 2 1 = - 1 11.8)
1-V2

c2

The last equation contains three forms of energy :
» Static (motionless) energy known as potential energ
Eo = myC?

This is the emblematic relationship of restittelativity.

* Dynamic or total energy :{E= m
1- V2
e

» Kineticenergy: E= E-E

The serial development of the formula (11.8) obsim the
case of low speeds, the ordinary expressionaf E
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1.2 Relativity

Before the discovery of electricity, NEWTON’s sdied
classical mechanics dominated physics and astronoifiyis
discipline, based on the movement of material ®mdessociated
energy with mass via force or impulse. The adverit o
electromagnetism upset the world of physics at timee, by
introducing a new form of non-material energy tpedpagated itself
at the speed of light. This significant breakthrouig experimentation
stimulated the theoreticians in their search foneav scheme of
physics incorporating electromagnetism and, atex ktage, quantum
energy.

For more than a century, the researchers multiphiea efforts
without their achieving any real measure of succksshe first two
decades of the twentieth century, Albert EINSTEINimmained a
thesis that became a veritable classic, one tlmatiged the answer to
several insoluble issues of the time. He imaginee $pace-time-
matter interaction and built his theory (relatiyityy two phases :
"special” and "general". The first interprets tlifeets of acceleration

in which the ratio% becomes significant while the second creates a

quadri-dimensional (quadri-variable to be precisglation between
the surfaces of gravitational equi-forces.

11.2.1 Special Relativity (see also A.4.2)

Reminder :

Mechanics, both rational and empifféal were
introduced in 1638 by GALILEO and suppleteeh in 1686
by NEWTON. GALILEO was responsible for the relatyviof
movement "a movement has no direction unless it is
related to a defined system of reference” and the
first principle of invariance concernindiet laws of movement.

(1) rational (of thought) and empirical (of knowledge).
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It is to him that the first group of conversionsamiordinates between
two reference points is owed, one being a tramsiati rectilinear
movement that is uniform in relation to the other.

The GALILEO Group remained unshakeable until 18fF2
year in which MAXWELL (see A.5) established his equations
concerning electromagnetism. These invalidated GEO's
transformations (due to their variance) and enameadd ORENTZ to
pursue research into a new group valid for the wiodlphysics, and
for electromagnetism in particular.

The experiments conducted by MICHELSON-MORLEY in
1887 added a new embarrassment to the old lawseohamics when
he publicly and incontrovertibly demonstrated teat speed of light is
both limited and non-additive. This overturned traitional law of
the vectorial composition of velocities.

In order to revive physics, LORENTZ simply renouthidhe
fundamental concepts of Newtonian mechanics anchidlated the
second "principle” of invariance concerning the espef light. He
believed that space-time interacts with the movenoérbodies and

changes its properties in relation to the ra‘éio This change was the

basis for his own group of transformations estabklisin 1903 and
validated by the invariance of MAXWELL’s equations.

LORENTZ's space-time model attracted the intere$t o
MINKOWSKI who suggested the Euclidian quadri-dimensl
continuum (vacuum) and compl&x

(1) The time dimension was considered to be imaginarthat the metric would
remain invariable in the LORENTZ group. It is pififto see the relativists
devalue the GALILEO group simply because GALILEQI diot satisfy the
invariance of the MAXWELL equations while they sappthe LORENTZ
group to the detriment of the metric which needsetoain real.
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Discussion :

Principles :

The first principle of special relativity is of aesthetic nature
since the laws of physics are, by their naturegp@hdent of any form
of expression.

As for the second "principle", the speed of liglgt &n
electromagnetic measurement in a vacuum. It isrialbke in essence
and unworthy of formulation in a principle.

Hypothesis : (The LORENTZ Contraction)

The LORENTZ Contraction is merely an arrangement of
calculus. Let us consider a space shuttle equippéd an optical
instrument for measuring length. According to th tprinciples of
relativity, the length of the shuttle is measurdtew it is at rest and at
very high speed = ct and €' = ct' respectively. Thet' < ¢
inequality is interpreted in the first degree, asaamtraction of the
shuttle. This hypothetical contraction must be pefedent of the
direction of movement.

Implications :

1) Time does not dilate with acceleration, these doeks
that are slowing down.

2) The LORENTZ group, obtained as an exampléA.5),
does not refer to any event and does not use anyadaa
criterion of validity. On the contrary, a system of
transformation of coordinates must be transpaceatl tthe
laws including the fundamental metric (1.9).

3) The geodesics of space-time are independent of any
movement.
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Formalism : (MINKOWSKI metric)

The MINKOWSKI metric is a mathematical expressi@vaid
of physical meaniry. It should be specified that MINKOWSKI
space is not four-dimensional but three-dimensiom#gh a time
parameter.

11.2.2 General relativity (see also A.4.3)

Reminder? :

Albert EINSTEIN, who was aware of the inadequoyf the
Newtonian theory of gravity and enthusiastic aba@RENTZ'’s
“relativist" ideas, embarked on the search for ectgzular but more
general alternatiVd. He was inspired by two principles, an ancient
one dating back to the Greeks and a new one. Thg borrowed
from DESCARTES via MACH, saw space as a supportrfatter, the
second (1907) claimed to create the equivalencerdset Galilean
inertia and the gravitational force.

EINSTEIN, in his Special Theory of Relativity, geaksed the
principle of invariance "all of the systems of GAUSS coordinates are
equivalent for the formulation of the laws of nature" and gave it a
mathematical formulation (the covariance principi€)the laws of
nature need to be co-variant in relation to any continuous
transformations of coordinates’. He predicted some of the effects of
gravity and reached the pinnacle of his achievemebly
demonstrating that NEWTON’s theory was just a latiér® of his
own.

(1) since the formulation of nature must be real.

(2) We will concentrate exclusively on the oridinarsion of relativity without
taking account of extrapolations added subsequently

(3) such as the inexplicable precession of théhekon of the solar planets which
is particularly notable in the case of Mercury.

(4) valid at any point in space-time, regardielSthe distribution of matter and the
movement thereof.

(5) The two theories agree at points distant ftbensource of the field.
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The effects of gravity :

EINSTEIN stipulated the distortion of light passiclgse to a
heavenly body : & ray of light in a gravitational field must become
curved similarly to the curvature of the trajectory of a body thrown
through a gravitational field". He realised there would be a loss of
energy (the spectral shift to the red) of radiationa gravitational
field : "an electromagnetic wave emitted by a massive body at a given
frequency will propagate in space at a frequency that is shifted
downward". He claimed that clocks would slow down if expdge a
strong field : tlocks will run more slowly if they are located in the
vicinity of a heavy mass' and specified : the frequency of an atom on
the surface of a celestial body is slightly smaller than the frequency of
an atom of the same element that is found in free space or on the
surface of a smaller celestial body".

Success :

Relativity correctly explains the precession of pegihelion of
Mercury and has passed all the tests to whichsitoeen put.

Discussion :

Principles :

The MACH Principle contradicts the postulgt5). Despite
the perfectly acceptable criticisms of the relatisj the Newtonian
vision of the universe remains inevitable.

Covariance is cannot be defined as a principleisithe
tensorial property of invariance.

The "principle of equivalence" dedicated to the dtipesis of
the curve of space is an argument of a propositialig uniquely as a
model. The heavenly bodies are subject to a balaht@mces and are
not free nor are their movements inert.
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Hypothesis : (curve of space)

Mass does not cause space to curve, since intamnaostween
different natures is prohibited. As for the disimmt of light,
considered to be proof of the theory, this is thsult of interference
between the gravitational, electrical and magnéatds. It should
always be remembered that the curve of space, ekigts, would
never be perceptible to man.

Formalism : (field equation)

The equation %gw R-Ryv-Agw = % Tw (11.9)

is insoluble in this form since the coordin&tesf its left and right
members are unknown. EINSTEIN overcame this diffycuby
resorting to the preliminary data (initial condig) leading to the
(special) solutions approached. This type of mdaimn attacks the
generality of the theory.

Moreover, the dimension % of the above equation implies a
two-dimensional curve of nature (s). This is a acef that is
manifestly closed, replacing the vectors of grdwota equi-forces at
its extremities. This surface, whose topology degempon the
guantity of enclosed matter and its movement, corsfithe laws of
the conservation of matter and of impulsion, consedjy nullifying
the divergence of the right member and then thenefmber of the
equation (I1.9). Finally, it should be noted thatetmetric in this
equation is a generalisation of that of MINKOWSKI.

In fact, any extension of the equation (1.9) inddferent
energy states of matter-impulsion or into geomstaka higher order
than four is a mere mind game. It would have beeremelevant to
seek the geometry of gravity (surfaces of equalitational force) in
conventional space-time instead of playing with ampnate (non-
linear and complex) equations.

(1) The left member is devised on the basis of the comapts of the right member
and the latter is referenced to the geometry ofdfienember.
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Serious errors :

In summary, the relativists commit two unforgivableors (of
physics and mathematics), expressed as negatives :

1) Universal space cannot comprise an imaginary diroans
2) The dimensions of any space cannot be dependent.
Proposition :

It is a good idea to look for equations in the geational field
of a five-dimensional architecture.
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1.3 Cosmology

This supplement contains a new interpretation oBBUE’s
discovery on which our vision of contemporary cokgy is based.

HUBBLE's discovery : (see A.2.2)
The ratio (A.1) can be writtenz = Hqt (1.20)

where t is the time distance that separates us fhengalaxy being
observed.

This formula reveals two fundamental properties
extragalactic radiation :

The shift property :every electromagnetic (or gravitational) wave

doublesits period (loses half its radiation intensity) over HL time.

In fact, for £ = 2f, onehas: =1 and t= HL

This property that prevents the passage from a)@e:ril to

0

atime < HL evokes the second property :

The minimal frequency property: the maximum period of an
electromagnetic wave is Hl [S].
Corollaries :

1) SinceAt is the minimum possible period of radiation,
derives from :

0 the extreme frequencies of a wave :
fmax = Alt ~ 1.855- 10" [Hz] ;

fuin = Ho =~ 2.43< 108 [Hz] .

of

it
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0 the maximum spectral shift :

Zmax = fmax -1~ fmac o~ 7635105

fmin Ho
0 the maximum causal time :
thax = ZHL ~ 110" [s] (1.11)

2) The frequency limit () characterises the minimum
intensity of the energy and the temperdfiref the
vacuum :

Jmin = hHo =~ 1.61<10° [jis] 2>
Omin =~ 1.164872 102 [°K]

3) The frequency . radiates the maximum intensity of the
energy and the temperature extreme :

dmax = b = 1.23<10[jls] 2 BOmax = 8.9 10°?[°K]
Interpretation of the discovery :

EINSTEIN predicted that light is distorted whempésses close
to a celestial body. This distortion depends on ithtensity and
orientation of the fields (gravitational, electlicand magnetic)
through which it passes. In other words, the lihdight bends in a
manner that depends on the mass with which it comesontact and
its electrical charge. As we understand it, theftsimeasured by
HUBBLE is the result of this curve. Consequenthistphenomenon
is now referred to as the "curve effect”. It is egguiate to indicate
that the line of light only coincides with the Sphtgeodesic in a
vacuum.

This interpretation irrevocably invalidates the ampion
theory? and signifies the following :

(1) The radiation from a heat source satisfies the laguaf the formulae (1.8) :
hf=k6.

(2) Whereby the density of galactic matter de@sasver time, the curve of the
light trajectory lessens and the shift is reduceus does not actually accord
with the experiments.
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» The shiftdistance proportionality (HUBBLE’s observation)
demonstrates the regularity of the curve alongwhele
length of the path of light. It is a fact that, arvery large
scale, the spatio-temporal distribution of galactatter is
uniform.

* The question concerning the formation of matter #nel
electrical charge remains unanswered.

It should be mentioned that EINSTEIN’s shift depaiees with

every approachingeceding celestial body. It has therefore been
omitted.

In any case, the curve of the optical line is @ty constant. It
is manifested between two galaxies as follows :

geodesic distance Xd

./_\ observed
\_/.

observing *

optical distance (d)
(Fig. I1.5)

The overall curvature of this line is indicatedtire following
circle :

(Fig. 11.6)
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where : z denotes the shift ;
DA & is the radius of the curve of the trajectory ;

d = D4 2(1<osz) for zU[0,m;

1—cos(z—nn)} _- _z
2 )

forallz: d=2D {n +\/ (1.12)

int
Breakdown of the shift :

The imprecision of the HUBBLE constant concealslihieage
of two effects: the curvature effect and that af thcommensurable
movement of the galaxies. Since the first is lingae second is
pseudo-random since the study of galactic movenmrésthe course
of history has probably been inaccurate. On therdtand, an average
value for this effect can be calculated experimigntnd on the basis
of probability.

This being the case, the shift measured can beebradlwn
into two quantities :
Z=Zct+ 7y,

¢ and m for the curve and the movement respectively

Implications :

In this vein, certain limitative valu€sof a universal nature
can be detected.

Cosmic units :

By analogy with PLANCK's quantum units, HUBBLE's
"cosmic units" can be defined as the maximum peaiod its spatial
and energetic counterparts :

(1) By denoting in passing bil, the precise value (in relation to the curve) of, H
the formula (11.10) is transcribed as : z 7 2 Hy t. This having been done,
HUBBLE can be said to be responsible for the ratidz = H, dt =>
zZ = Ht+z,

(2) The accuracy of these values depends on that,of H
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AT A ~ 4.12-10" [s] =~ 1.30555:10" years ;

1
Ho
AS = cAT = 1.236<10%° [m];
AE = bAT =~ 5.0649<10°" [j].
Range of a wave :
A wave emitted at the frequendytravels through space for :

fe _
t= HL = H|f|— [s] hence the range : € ct [m].

cf

e
2 "
(o]

For .>>H, theresultis: &

Great circles :

As we understand it, the only indication that résdhe curve
of space (the finite nature of the universe) issaauime (tay
produced by the ratio (I11.11). The geodesic lengththis time is
calculated on the basis of (11.12) :

hax = ZLO = Zﬁ-
The ratio between the two time periods amounts to :

tmax = % tmax -

This consists of a circle withndx and fax as the radius and
the horizon respectively.

"Grand temporal” of the universe refers to its age
T = 4 tyax = 411 10" [s] =~ 3.982< 10" years.

The visual and energy equivalents of this circletaos written
as :

S=cT =~ 12n-10°° [m] ; E = bT =~ 1.54481992 1% [j] .

Consequently, the hypothetical radius (in the oafe) of the
cosMos is represented as :

R~ 6-10° [m] ~ 6.33762:10 [al] .
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1I.4 Electromagnetism

Any electrical or magnetic phenomenon occurringyature is
the result of an electrical charge (positive orateg). The presence
of the charge induces an electrical field, its nmgat is known as an
electrical current and the latter creates the magnigeld. The
animation (or vibration) of the charge producesirdluence (wave)
that propagates itself at the speed of light. Hppropriate to mention
here that heft is a natural source of electromagnetic radiation.

A dimensional analysis of MAXWELL'’s equatior(see A.5)
produces :

For the quantities :

[E] = ST? kinetic vector ;

[D] = ES*T? dynamic vector ;

[H] = ES®*T dynamic vector ;

[B]=T! kinetic vector :

[J] = ES*T dynamic vector ;

M]=T? kinetic vector (fictitious source) ;
[p] = ES°T? dynamic quantity ;

[f] = STt kinetic quantity (fictitious source).

For the equations :

[1%equation]= T?  (kinetic) ;

[2" equation]= ES*T (dynamic) ;

[3 equation] = EST? (dynamic) ;

[4™ equation] = ST? (kinetic).
The modal analysis of these equations shows that :
1) All the vector fields have model™;

2) The equations, like the sources, have mbtie.

(1) This is the only known form of pure energy.
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Comment :

The electrical/magnetic action environment is transpt as to
quantities and kinetic equations.

Transposition into five-dimensional space :

The expression of electrical and magnetic quantitiefve-
dimensional terms assumes the transparency ofntfisoament to all
of the terms indicated above. It can be spontargalesiuced that the
MAXWELL equations and the structural equationslarear.

Proposition :

It is wise to rewrite the MAXWELL equations on tbasis of
(e;s; t).
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11.5 Gravity

Just like electromagnetism, mass is at the oridginany
gravitational phenomenon. Just like the electrichlargé”, the
presence of mass produces a "gravitic" field, itsvement is known
as a gravitic current and the latter produces avific" field. The
vibration of mass (or the disturbance of matternagates a
gravitational wav€ that propagates at the speed of [{htt should
be realised that the first three quantities of @yaim, G and y,) have
the same dimensions (share the same natures) msethetrical
analogous (g,E and &,). Using this line of thought, it would be
plausible to establish the parallelism betweenteletagnetism and
gravity that is illustrated by the table (Table )I.1

The gravitational equivalents & and u are :

Y = v, v, forgravitic permittivity ;

X = %o X, for gravific permeability.

From this, the following is easily concluded :
1

V7Y oXo

Gravitational power :

Taking the example of POYNTING’s vectgsee A.5) the
result is:

R = GAQ [Wm? =%(sz+xQz)v v =

=c D y,=9.3166-10%" [m’js].

1
WX

Inavacuum:wv=c andG-Q =0 9 v ,G2= y, Q2.

(1) Charge is distinguished from mass in two ways: &@h is always associated
with mass and the latter has no plus or minus aitathed to it.

(2) The term was used for the first time in 1905 inwh&ings of POINCARE.

(3) Itis the speed of any non-material influeneer¢lling through a vacuum.
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Proposition :

It is fascinating to discover a system of equatitorsgravity
that are similar to the MAXWELL equations, but tsansed into five-
dimensional space.



Electromagnetism Gravity
Quantity symbol action Quantity| symbol action
electricity E electric gravity G gravitic
magnetism H magnetic gravifism  Q gravific
displacement | D electrical current displacement O gravitic current
induction B magnetic current induction Q gravific current
load q field mass m field
electromagnetism electromagneti gravitatioln gravitational

(Table.ll.1)



1. MATHEMATICAL
TOOLS

Digitisation and resolution
of linear differential equations
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I11.1 Digitisation of variables

N.B.:
This tool, used in physics, employs certain mathésal

concepts in terms of its internal logic.
111.1.1 Independent Variables

General remarks :

Certain authors (non-mathematicians) confuse diswaity
with the digital, function with distribution and ewr a set and a series.
In order to make things clear :

 Ratio refers to a function or distribution.

« Only the family ofapplications™ of ratios is of interest here.

» The following definitions are applied here :

o Digital variable, the monotonous set &f ;

o Digital function, a function containing digital variables ;
° Analogical function, any application that uses continuous
variables (admitting dx).

It should be mentioned in passing that punctuabsatuch as
the function3(x) or the setd(x - pX) of DIRAC are analogf®.

(1) As a reminder, an application is a surjective-fhefhded and univocal ratio
(X~ Q).

(2) pUZ (to simplify) and X is the period. According to SCHWARTZ, 3(x) is
a function but its derivatives are distributions.
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Concerning discontinuity :

Normally, discontinuity is an epithet used to dészrratios
that are non-derivative in certain respects. Aahsiouity such as this
poses no problem for digitisation. To be more dpediscontinuity is
a vertical fracture that, at one point in the Malea produces two
different values for the ratio. This type of distionity is the subject
of distribution§”, at least for physicists. For this purpose, the
digitisation process needs to be adapted slightly.

Concerning the variation :

Let there be a ratio g(x) between two variables being
independent and with uniform increase (at constaniation) and g
being dependent on x. This ratio translates variation of g in
relation to x in three forms : analytic, graphicdigital. When g(x) is

analytical and indefinitely derivableg—g is used to designathe rate

or speed of this variation, through (;L;gz the rate of the rate of
variation and so on. It should be pointed out imiaiedy that the
significant interest of a FOURIER transform is e ttranscription of
a differential into an algebraic term.

Dyadic spaces :

It has been established that the binary numBeasid 1 are the
simplest, most intuitive and most natural numbensceivable. These
two fundamental stat€sof understanding constitute the basis for any
digital mathematical construction and formal logic.

A number containing N binary figures representsdi#ferent
states. In dyadic terms, a space having N dimesstammprises "2
points (or positions). These positions, orderedoating to their
decimal values, constitute a preponderant setgmatliprocessing.

(1) Do not confuse the discontinuity of distributiavith the continuity of their
variables.
(2) The statement and its negation such as "ye§ia, "true" or "false", etc ...
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Digital variation :

The variable m] 7 , discrete by definition, does not accept
analytical operators such as derivation and intemra It is
consequently excluded from equations in physicsoV¥ercome this
difficulty, m is associated with the continuous sof x in the
following manner :

AX

| N D S N N S B B N N D B B = m, X

-3-2-1 012 3

(Fig. lll.1a)

where Ax mathematically represents the unit. It is thespge from
"discrete digitisation” to "analytic digitisationtedicated to the
substitution m € mAx. On the other hand, the switch from
continuous to digital via & mAx is known as "digitisation”. It
assigns toAx the relationship of scale between x and m. Rin#he
term "associated digital variable " or more sinfPlidigital variable"

Is assigned to the conceptArm

Variation interval®:
Digital calculation uses finite values of variableand
functions. This terminates the variation intervafallows :
x[[a,b] ; b-aAX
It is always desirable in this case to restricitdigtion to this interval
and, if possible, to make the origins &f and m coincide. Where

these origins are fatally separate, the substitutio € X + mAX
takes their place :

(Fig. 111.1b)

(1) without possible risk of confusion.
(2) It corresponds physically with the field of obsaien, action or measurement.
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Note that the property of periodicifgee A.6.2)of FOURIER
digital transforms make it possible to begin theenmals of x and f
at the origin of these coordinates. The resulthet X, like F (the
equivalent ofX over f) are virtually nil.

Sampling :

If digitisation is a sort of change of variable €« mAx ; Ax
being the indivisible step of the measurement) iagplinrestrictedly
to the axis of x, sampling is a technique to bgliad to the interval
X, one that should satisfy the dyadic requirement :

M=22-1 ; Méi
AX

int
Furthermore, if M is too large, the choice oAx must

maintain the variation of the function being pramss with a single
Ax that is less than the measurement threshold.

111.1.2 Dependent variables (functions)

Description :

Definition :

Like the digital variable, the standard applicat@mAx). is
known as the "associated digital function” or siynphe "digital
function”.

Criteria :

1) The analogical function and its digital version reh¢he
same analytical properties.

2) The digital function must be locally integrafile

3) Unlike the variable, the digital function may tadkey finite
value.

(1) Suitably digitised distributions are alsceigtable within the meaning attributed
to them by RIEMANN.
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Comment :

All analogical ratios originating in physics can benverted
into digitals.

Integration .
This is the function defined by : g(m)|a form=0;
0 elsewhere.
g(m)
A
a4
L L L 1T 1T 17T 17T 1T1 - m,X
3-2-19p12 3
(Fig. lll.2a)

It is obvious that the Riemannian integration ds tfunction
over X is nil. This means that g(m) is indepemdf x and devoid
of analytical meaning. In order to appropriate Yyfor integration,
one must resort to the substitution €4 mAx so that it produces :

g(mix)

AX

1 T 1 —r 1 - mAX
-3-2-101 23

(Fig. 111.2b)

Ax
)

_[g(mAx) dx = a_[ dx = aAx (111.1)

—00
2
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Functions of DIRAC :

Analogical expression :

It is normal to use the term DIRAC "“impulsion" (or
measurement) to describe the function :

o(x) = [1 forx=0;

0 elsewhere.

The uniform repetition (at constant interval) of isth
measurement generates the set :

OxX-pX) = 1 for x=pX ; (p=&1,%£2,...,20)
0 elsewhere.

This set, as well as the impulse, are devoid ofnfaienian
integration.

Digital version :

The digitisation of the x axis will verify the edig of :
X = vAx ; v being a whole number.

O(X - pvAX)

——t—t——— m, X

-M -32-10123

vAx (Fig. 111.3)

Integration :

The previous set is only integrable on an inteteaminating
in X, [-M, M] for example, the result of the formyll.1) is :
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MAX M

j O(X - pvAX) dx = Zv: O(X - pvAX) AX = (1 + ZM) AX
N o] v

Typical functions :

Mono-variable function :
Let there be the function :

g(mAXx)
A

VARRN

/ \

/ \

||kv|||||/||||||||||||||\||||=mAX
S = 2-1p123 \

N\
\h—
(Fig. lll.4a)

The substitution mx € x incontinently restores the
analogical version :

g(x)
|

AX
II\IIIIIIIIIIIIIIIIII

3-2-10123

(Fig. 111.4b)
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g(mAX) is commonly expressed as follows :
g(mx) A g(x) d(x - mAXx) ; (m=0x1,%2, ...,+0) (1n.2a)
with : d(X - mAXx) A | 1 for X = mAX ;
0 elsewhere.
Integration

Assuming that g(x) is integrable, this produces :

fg(mAx) dx = fg(x) O(X - MAX) dx = AX i g(mAX)

—00 —00

Multivariable function®®:
Let us consider the function :
g(MAX1, ..., MAXy) A g(X) 3(X1 - MAX1)...8(Xy - MyAXy)
(Mg, My, ..., my=0,%£1,£2, ...,%0) (1.2b)

Integration

j j 9(X) (X1 - MAX)...8(Xy - MuAXy) dX0Xo ... 0%y

00 00

= AXp..AXy D o D g(MuAXy, .., MAXy)

ml:—oo mN:—oo
Convolution ;

Analogical expression :

The product of the convolution of two mono-variahlactions
is written as :

00 B | 0a®) gac-)

(1) Itis convenient to transcribe the multivateafunctions into multi-dimensional
spaces.
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In the case of a multivariable function, it is it :

G(R)AR) = [ oo [ 0u(E) (R-E) ...

Digital version :

Along the same lines of development, the followiran be
deduced :

00

gu(MAX)Lh(MAX) = Ax > gu(kAx) ge[(m - K)AX] ;

k=-00

(M =0,+1, 42, ..., +w) (11.3a)

O1(MAXg, ..., MAXY)CG(M1AXy, ..., MAXy)

00 00

= AX1...AXy Z C. Z g]_(klAX]_, vy kNAXN)X

ky=-00 ky = -0
Q[ (M1 - K)AXq, ..., (M - ka)AXN)] ;
(Mg, M, ..., my=0,%£1,£2, ...,x0) (111.3b)

Periodic functions :

Analogical expression :
A mono-variable periodic function is expressed :
9(x) & g(x - pX) = Gu(x)EB(x - pX) ; (p = 0x1, %2, ..., %)
(l1.4a)
where g(x) is the main period defined onX [0, X].

Comment :
A periodic function is continuous if 1) = g(X) and
discontinuou®’ in the opposite case.

Where the periodicity is multivariable, the regslt
9(X) = 9(x1 - PX1, ooy % - PRXn)
= u(X)B(X1 - pX1)0... [B(Xn - X)) ;
(P p2--o, v=0,£1,£2, ..., %) (111.4b)

(1) Itis possible for gX) itself to be discontinuous (a distribution).
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Digital version :

Since the periodic function is defined by its maiariod,
sampling is limited to this period. As a result :

a(mAX) = g(X) d(x - mAXx) ; (m=0,1,2,...,M) ;
MAX = X (111.5a)

Q(MAX, ..., MAXy) = q(X) d(X1 - MAXy) ...0( Xy - MyAXy)
(m=0,1,2,...M; ..., m;y=0,1,2, ..., M) (11.5b)
Aperiodic functions :

Let the function gx) be continuous and locally integrable :

%2(X) a(x)
ml [ m L o M, X
3-2-1¢1 23 AX X \

(Fig. lll.5a)

Let us only consider the p&ttgi(x) over x I [0, X] of ga(x).
This can be tackled in two ways :

1) By replacing g(x) with the above periodic functiéh
9(x) = g1(X)DB(x - pX) ; (p=0x£1,%2, ...,%x)
which can be digitised in accordance with (l111.5a).

(1) Itrecalls the field of action mentioned above
(2) This is justified by the fact that g(x) reprmes g(x) all along the axis x.
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At any event, the property of (A.6.2) converts ahgitised
function into a periodic function having the intahof variation as the
period.

2) If we multiply g(x) by the functiorm(x) :

A
&(X) M(x)

1 .

\)/ X T

(Fig. 111.5b)

this immediately produces 1(8) = M(Xx) x g2(X)

%) /Q(X)\/(\

T T T T T T T N T L L L L L L L L L L L e \IV m,X
12 3 AX X

(Fig. 111.5¢)

Derivatives :

The following formulae are shown respectively ingA) and
(A.6.2) :

d"(x) = ge)B™(x) (11.6a)
gdV(mAx) = g(mAX)B™V(x) ; (m =01, +2, ..., +o0) (111.6b)
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111.2 Resolution of the equations

To simplify this essay, we shall restrict ourseltesmono-
variable equations.

111.2.1 Algebraic equations

Equation lacking a second member :

Consider the equation :

X)X -&)(X - &2)...(x - &) = 0 ; g(x)# O (H.7a)
This permits the following solutions :
g(X) = @ (X - &1), @O(X - &2), ..., & O(X - &) (111.7b)

in which a, &, ..., & are arbitrary constants in the absence of the

initial conditions. The latter must correspond torps &1, &2, ... and
be limited in number to K.

In digital form, the arbitrary constants are préalite. They
are assigned the default unit where the initialdittons are lacking.
In this order, the equation (111.7b) is written :

g(mAX) = d(X - MAX), &(X - MpAX), ..., (X - mkAX) (lll.7¢)
Two-member equation :

Let: g(x)(X -&2)(X - &2)...(x - &) = p(X) (I.8a)

It can be seen that where x¢xor x =¢& ..., the equation
loses its second member :

p(x) € 0 and g(X)= & d(x - &1), @A(X - &2), ..., & (X - &)
Outside the point£y, &2, ..., this produces :

p(x)
(X-E)(X-&,)-(X-E)

9(x) =
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In the same way, the general solution of the eqnatill.8a)
produces the following result :

_ _ ) _ p(x)
G0) = 2B - &), 2B - &), -+ ABMK &) Lo
(111.8b)
The digital version of this equation is written :
— sy ) p(mAX)
g(MmAX) = d(X - MAX), ..., d(X - MAX), (X-MAX)...(X-MAX)
(1.8c)
111.2.2 Differential equations
General form :
A linear differential equation is expressed as :
a dr-
P60 T 4 g g LW 4 o 90
Po(X) 9(x) = p(x) (111.9)

where pr(X), ..., p(X) and p(x) are known functions. It is fascinating
to recall that the origin of this equation lies physics, all of the
components being locally integrable.

The digitisation of (l11.9) results from the sulstion :

X € mAX ; (m=0zx1,%£2, ...,20)

Resolution schematic :

The equation (111.9) can be solved in four stages :
1) Digitising the equation by determiningx and M ;
2) Applying TF(see A.6}o all its members ;

3) Separating the knowns from the unknowns ;

4) Proceeding to TE
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Example :

For the sake of simplicity, let us make do with "d @egree
equation :

po0) S 4 pi) 9D s g gy =) (1110a)

The digitisation thereof for a terminated intergabduces :

p2(MAX) ng((jr)r(lex) + p(MAX) dg(mAx)

Po(MAX) g(MAX) = p(MAX) ; (m = O, 1,2, ..., M)

The application TF produces :

p2(WAF) L[ (j2rwAf)2 g(wAf)] + pa(wAf) [ 2rwAf) g(wAf)] +

Po(WANYWAR) = p(wAf) ; W=0,1,2, ..., W)>
Af f‘, ol(w - K)AT] { pa(kAf) 121w - K)AFI2 + pa(kAf) 27w - K)AT]

+po(kaf)} = p(waf) ; wW=0,1,2,..., W) (111.10b)
The periodicity ofg(w) in W enables the substitution :
gl(w - K)Af] € g[(W +w - k)Af] where w< k

As a result, the variation of w in the equationl.{0b)
generates an algebraic system, from W + 1 lineanatsans,
containing unknowrty W of the type g(wAf).

The resolution of the latter results in the funetia(wAf)
which with the help of TE, serve to reconstruct the function g(x).

Example of calculation :
Let Af {pz(kAf) [i2T(w - K)Af]2 + Py(KAS) [[2 1w - K)Af] +
po(kAf)} = @wAf, kAf)

(1) Because the continuity af(f) implies : g(0) = g(W).
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The following is deduced for :
w=0:
g0) @0, 0) +g[(W - 1)Af] @0, Af) + ... +g(0) @O0, WAF) = p(0)
w=1:

QAR @A, 0) +g(0) @A, Af) + ... +g(Af) @Af, WAF) = p(Af)

w=W:
gWATF) WA, 0) +g[(W - 1)A] @WAT, Af) + ... +
9(0) @WAf, WAf) = p(WAT)
Remembering thag(WAf) = g(0) and p(WAf) = p(0).
This system is finally shown as :

G00(0) + G G(AR) + ... + Govy OLW - DAR)] = p(0) )
C09(0) + G1 g(Af) + ... + Gy 9l(W - 1)A)] = p(Af)
| (111.10¢)
| >
Cw-109(0) + Gwapn 9(Af) + ... +
Cow-y w- (W - DAR)] = p[(W - 1)Af)]
Cwo 9(0) + Gu1 9(AF) + ... + Guw O[(W - 1)Af)] = p(0) )

in which ¢, are numbers.

Special case :

For p(mx) = 0, the system (lll.10c) accepts non-trivial
solutions since two, and only two, of its equati¢tine first and last)
are linearly dependent.
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CONCLUSION

In this memorandum :

* Universal space is described.

* The spatial dimensions and those of measurement ar
unified.

Differential equations of nature are rendered linea

The effects of acceleration, the distortion of tigind the
HUBBLE shift are interpreted originally.

The Theory of Relativity and the BIG BANG Theoryear
disproved.

* An own method of digitisation and an approach favisg
linear differential equations are devised.

It is now up to young scientists :

* to rewrite all the equations on the basis o&(¢) ;
* to establish authentic equations for gravity ;
* to study the cosmos without seeking an origiritfor

* to refine the mathematical tool and develop anrélyo for
solving multivariable linear differential equations

Finally, it would be wise to permanently curb artheisiasm
for generalisation and the desire to know everghin



APPENDICES
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A.l Systems of measurement

A.1.1 International system of units

This systertt), completed in 1960 and dubbed S, consists of 7
fundamental quantities and replaces all the preveygstems : CGS,
MKSA, MKSC, etc ...(see Table A.1)

Definitions :

Second : (1967)

The second lasts for 9,192,631,770 periods of tadia
corresponding to the transition between the twcehiype levels of the
fundamental state of the atom of caesium 133.

Metre :

(1960) The metre is a measurement of length eigua|650,763.73
wavelengths in a radiation vacuum correspondingthi®
transition between the levels ;3pand 5d of the atom of
krypton 86.

(1983) The metre is the length travelled by lighta vacuum for a
. 1
period of ——— [s].
299792458
Candela : (1979)
The candela is the luminous intensity, in a givaedion, of a
source emitting monochromatic radiation at a freqye of

540~ 10* [Hz], which energy intensitin this direction i% [W/sr].

(1) It has constantly evolved and was more or lessatikéded” in 1982 by
abandoning LENGTH as a fundamental quantity in ¢enaf the speed of light.



Unit

Quantity Symbol Origin Dimension Unit symbol
Length L Kinetic L metre m
Time t Kinetic T second S
Mass m Dynamic M kilogram kg
Intensity of electric current le Electrical I ampere A
Temperature T Thermodynamic O] kelvin K
Intensity of light Iy Optic candela cd
Quantity of matter Qm Chemical mole mol

(Table A.1)




Mole : (1971)

A mole is a quantity of matter in a system contagnas many
elementary entities as there are atoms in .01 ¢kgarbon 12.

Comment :

It would have been more relevant to calibrate thedrenas a
distance covered by light passing through a vacdoma period

Iasting% <108 [s] representing, very precisel@0.6421059periods

of the radiation referenced to the second.

A.1.2 System proposed

Our system is based on the new fundamental giemtiheir
dimensions, modes and units. The following tablkews the old
fundamental quantities (mass, electrical charge tantperature), as
an indication, a few derived quantities and finatlye principal
constants discussed in this essay.

Quantities : (see Table A.2)

Constants : (see Table A.3)



Former

Type Quantity Symbol [pimension Mode Unit dimension
Fundamental quantities
Energy e E M j S*MT?
Length s S M m S
Time t T M s T
Former fundamental quantities
Mass m ES?T? M Kg M
Electrical charge q ES?T? M C Q
Temperature 0 Tt Vi K [©)
A few derivative quantities
Quantity of movement p ES'T M js/m MST™*
Density of energy (longitudinal) e ES™ m° jim SMT?
(Surface) es ES™ Vi jim? MT?
(Volume) e, ES® M2 jim® S*'MT?
Power P AND™ Mm° jls=W S*MT?
Heat W E M j S*MT?
Entropy, Action S AND M? is S*MT?
Force F ES™ M° N SMT?




Intensity of gravitic field G ST? Mt m/s’ ST?
Time frequency f T Mt Hz Tt
Density of the volume of the EST2 M2 c/m? Qs?
electrical charge P

Intensity of the electric current I ES?T m° A QT
Surface density of the electric 3 ESAT M2 Alm? 0s?T?
current

Intensity of the electrical field E ST? Mt m/s®=V/m sMT?Q*
Electrical displacement D ES*T? Mt | 3s¥m* = C/m? Qs?
Intensity of the magnetic field H ES®T Mt A/m s'T'Q
Magnetic induction B Tt Vi 1/s MT'Q™
Number of waves Ko st M* 1/m st

(Table A.2)
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Type Name Symbol Pimension | Mode Unit D_Formgr
imension
Fundamental constants
NEWTON'’s constants Yo ES®T* 0 js*/m® S*MT?
Dielectric permittivity  of the & ESSTS MO 3s"m® = Fim | S*T°MQ?
vacuum
Magnetic permeability of the " ElgiT2 M° m¥js? = Him SMQ?
vacuum
Fundamental measures
PLANCK’s measurement . 20 g2
(modified) b E M ) STMT
HUBBLE measurement Ho T! M* Hz Tt
Other constants
Speed of light c ST 0 m/s ST
BOLTZMANN measurement Kk E j S2MT2
(modified)

(Table A.3)

78



A.2 Frequency shifts

The subject of this appendix is two shifts, thdftsim
movement detected by DOPPLER and the shift in cuevealed by
HUBBLE.

A.2.1 DOPPLER shift

DOPPLER discovered that a wave (an electromagneti® in
particular) emitted (or received) by a moving objleses (or gains)
energy in the form of a positive or negative spEcshift, depending
on its direction of movemeftand its speed.

In a monochrome electromagnetic transmission betve®
remote units, one being in motion in relation te tther, the shift
between the frequency emitted) @nd that received ffwill be :

fe-fr f
NN BUISEYRVIE S LI 1L

As a result :

t:feife% =fe[1i

ol

+ and — indicates the direction of movement (advancing emoent or
receding movement).

In order to understand this better, let us comsadeansmission
alternating between three units, one mobile andfixed, in relation
to the scene. Then let us note the shift in thewohg two cases :

(1) Whether free or dependent.
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1) The transmitterE) is mobile and the receiverBR{andRy)

are fixed :
R E -R
\'
"69;; ___________________ . __@":A;"""""""""N:{}"
{ 1f— f() - Af f() f2 = fo + Af f2

(Fig. A.1a)

2) The receiverR) is mobile and the transmitter§;(and Ey)

are fixed :
= R E
\Y
6 =1y - Af =1y + Af d

(Fig. A.1b)
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A.2.2 The HUBBLE shift

HUBBLE established that light emitted from a distant galaxy
suffers a loss of radiation energy proportionalitgo distance. This
loss, translated into a spectral shift towards rsdjsotropic and
complies with the ratio :

%Z = Ho (A.1)
with :

d being the distance between ourselves and the galaxy
observed ;

z A % - 1 being the measured shift;and f designating the
frequencies emitted and received respectively ;

H is the famous HUBBLE constant.

It is crucial to remember that d and &re determined
independentl? of the HUBBLE experiment.

Interpretation :

HUBBLE was obviously the first to interpret hisptaration :
The shift of the light is a DOPPLER effect, shoven a

z=% > v=Hd

This first degree interpretation caused other s$isEn to
produce the following scenario :

(1) Work completed in 1928 and published a yatar|
(2) This certainly justifies HUBBLE's contribution.
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The shift proportional to distance is the resulthad divergent
recession (accelerated receding motion) of thexgedaThis assumes
that in the past, the galaxies did not move as dast were closer
together. By reviewing the history of the universesan be seen that
in a distant era the heavenly bodies were clustergether and even
crushed one against the other. The cosmos thusdaglinto a single
body subject to its own gravity that reduced it PANCK'’s
dimensions. This critical and unstable state (knewrsingular) of the
universe soon exploded, giving birth to everythiingt followed. This
mysterious "origin" of the world was dubbed the GBBANG" by
HOYLE® in 1948. From then on, astrophysicists workedessly,
but without significant result, to design a math&oz model that
would fit this strange singularity.

As we understand it, this scendfids too speculative because
we are unaware of any probable accelerator of #haxges and if it
were the case, their initial velocities would haween nil. This
undeniably refutes the initial hypothesis of th&EBANG theory.

At any event, HUBBLE’s work and especially his digery of
the shift are of vital importance for cosmolagge I1.3)

Comment :
Contrary to what the literature teaches us, the PIHR and
HUBBLE shifts are not defined in the same way :
ZDQA—f whereas 7z A AL - AF

e e fl‘

(1) The founders of the theory are FRIEDMAN, LEMRE and GAMOW.
(2) Rectified by the relativists who recommene éxpansionist space-time model.
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A.3 Effect of acceleration

A.3.1 Independent velocities

Independent velocities do not produce any mechhifect.
They simply obey the traditional vectorial rules asfmposition and
accumulate speeds greater than c but always lasth

As an illustration, suppose two bodies were reggétiom O at
a speed close to c.

®

v~c O -

-

(Fig. A.2a)

The relative speed (of one of the bodies in retato the other)
at which it recedes is close to 2c. It is worth Wimg that mobility, at
a speed greater than c, crosses the event horimbrpvents any
interaction.

At the same time, the speed of the advance wailgrtiten :

V=Vvi+VWw =~ 2C

® ®
O w=c y=c O

(Fig. A.2b)



A.3.2 Dynamic applications

Impulse :

t
— d(_v — I v - v
J _([ Mo ¢ R dt m00 d R Mo R
(2 (2 (3

v v
2
el
= V2 2 -Lz = c
Mo R +c2./1 2 Mo v
@ 1=
0 0
v
= m C2 = m0C2 1 -1
1- V2 1- V2
(o2 (o

84
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A.4 Relativity

Relativity is the study of natural movements assgmihe
elasticity of space-time and the interdependeng®iofary natures.

A.4.1 Natural movements

Modern physics distinguishes between four formasatural
movement :

1) nil movement,

2) straight movement,

3) movement of falling bodies,

4) gravitational movement of the planets.

The first two were considered by GALILEO to be iféand
equivalent (of the same essence). NEWTON revedleddentity of
the last two (falling bodies and gravitational mnant) and
maintained the difference between inertial (kinetiod gravitational
(dynamic) movement. EINSTEIN stipulated in his Spkedheory of
Relativity that inertial movement describes the dpsics of space-
time and claimed, in his General Theory of Rel&givihat there was
an equivalence between inertia and gravigyl :natural movement is
inertial. He explained this as followsthe planets gravitate on the
geodesics of space without being subject to any force. They are
effectively free bodies and their movement isinertial.

(1) Galilean principle of inertia"In relation to any free physical system used as a
reference, any other free system remains at rest or is animated by uniform
movement in a straight line".
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A.4.2 Restricted relativity

Physical aspect :

Restricted relativity relates to straight-line, fonm, kinetic
movement. It is based on two principles of invacmnand two
hypotheses.

Principles :

1) "Thelaws of nature all take the same formin all theinertia
systems of reference”.

2) "The speed of light is an absolute constant independent of
any reference point ".

Hypothesis :

1) LORENTZ's Contraction :"Lengths contract in the
direction of their movement".

2) "Inertial movements describe the geodesics of space-time".
Implications :
1) With acceleration, time dilates and mass increases.
2) The laws of naturenust be invariable in the LORENTZ
group.
3) The equations of the geodesics of space-time are the
eguations of Galilean movement.

Formalism : (1905)

Dilatation of time : 3= tl,ll-Vé

L
1V
C2

MINKOWSKI's metric : ds?= dx? + dy? + dz? + j2c2dt?

Increase in mass : m =



87

dvk  dxk
Galilean law of inertia: & = o " d—i(z =0 ; (A.2)
x¥(t) is the spatial trajectory of a free partiofea mass that is

not nil ;
t isthe time parameter.

A.4.3 General Relativity

Physics aspect :

General relativity applies to the movement of hedywéodies.
Its author maintains the principles and hypothedespecial relativity
and adds two other principles and a new hypothesis.

Principles :
1) The MACH Principle : the geometry of space is
determined by its material content.
2) Principle of covariance : (tensorial version ofanance)
The tensorial expression of the laws of physics must be in
covariant form.
Hypothesis : the curve of space

The curved mass in surrounding space (matter-space action).
Consequently, EINSTEIN ignored the gravitationalrces and
advanced his "principle of equivalence" : the ptanemovements are
also inertial.

Implications :

1) A strong gravitational field slows the clocks aridfts the
spectrum of light.

2) The geodesic equations of space-time are the equations of
the natural movements.
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Formalism : (1915)
Metric : ds2= gy, (x*, X2, 33, x*) dx'dx” ; ¥ = jet
Law of inertia : generalisation of the equati¢f.2)

SVE dRxk dx® dx?
= — = — k - =
d=5r=q s g a =0

Gravitational field equation :

EINSTEIN translated the MACH’s principle into a semial
equation describing the geometry of the contemgéad by gravity) on
the left and the content (matter and impulse) eidght as follows :

%gw R-Ry = kTw ; V=1, 2,3, 4dimensions) (A.3)

This equation is deduced from the principle of tleast
HAMILTON action transcribed by HILBERT for the imfitesimal
variations ¢, (X) € g (X) + dgw (X) that are cancelled at the
frontier of the area of integration, in the form :

S+ S =0 § = Loyg o' ; Su =] Lmgd%

where : §and $, are respectively the action of the gravitationeldf
and that of matter ;

\/5 d*x is the element of volume.

A hypothesis produced by EINSTEIN consists in atingt
that the Ly scalar should only be expressed as a functiog,pfand
its derivatives. The only suitable scalar is thevelR in a Riemannian
space. This results in :

Sy = Kg _[ R /g d’x ; kg is a constant.

The variation §Sy) of this ratio leads to the left member of the
equation (A.3) while the right member is drawn frtre proposition :

™ A 3Sy
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The terms contained in the equation (A.3) are esqw@ as
follows ®:
gv are components of the metric, functions of the
coordinates (s; t) ;
Rw is the tensor of the geometric RICCI curve, its
components are functions of (s; t) ;

R Is the scalar of the Riemannian curve ardanetion of
(CH

k is a constant of the Newtonian limit ofetlequation
(A.3), determined in 1916 by SCHWARZSCHILD :

k= 8nG : G=

ravity constant) ;
o 2y (gravity )

[0}

Tw is the matter-impulse tensor, fundamental ine t
mechanics of a continuous medium; its components at
each point of space-time, are functions of the ques
(p) and densityd) of this medium.

In order to close space apdable the possibility of a virtually
static distribution of matter, in 1917. EINSTEIN (in an analogy to
POISSON'’s equation) added to the left member ofetingation (A.3)
the term (-A\ gw ; /A beinga cosmological constant). He revised his
proposition in 1931.

Expressed in this way, the equation (A.3) takeddha :

%gw R-Rv-AQw = % Tw (A.4)

In 1928, E. CARTAN demonstrated the general natirthe
left member of this equation.

(1) We have deliberately avoided relativist vodabusuch as "geometry of space"
or "impulse-energy" metric, etc.
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General properties :

1) The equation (A.4) is a local equation, valid foraanplex
four-dimensional geometry in which the fourth dirgiem
IS imaginary.

2) The linearity of the equation (A.4) is governed the
intensity of the gravitational field. It is lineain the first
approximation, when the fields are weak and noedinn
the opposite ca&e

3) All of EINSTEIN’s tensors are symmetrical and witil
divergenc.

Comment :

1) The purpose of the equation (A.4) is to determihe t
geometry of the gravitational action from its mater
sources.

2) The dimensiof? of the equation (A.4) is [§ thus :
[g] =S 5 [R]= [Rw] = [A] = S%;
[%] = E'S ; [Tu] = ES®

From this the measurements : [R] 3JR= [A] = 1/m? can be
deduced ;

[826] = mj ; [Tl = s
From the outset, it is significant to note that :
* R, like/\, represents a two-dimensional curve ;

. % it is of the same nature as the constan{se& §1.2.3) ;

(1) since the strong fields do not allow for granciple of superimposition.

(2) The left tensor verifies the BIANCHI identjtyontracted on the pairs of indices
pg andra, the right-hand one satisfying the laws of conséowabf matter
and of impulse.

(3) independently of any form of expression.
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* T, expresses a volumic density of energy.

Unified fields :

In 1925, EINSTEIN attempted to unify the gravitaib and
electromagnetic fields. For this purpose, he carsid the principle of
variation :

5[ ¢"Ruw Jgdx =0

and the non-symmetry of the fundamental tensowels as of the
connection F}“ (CHRISTOFFEL symbol of the "2 kind) linked
thereto. This initiative enabled him to break dotke fundamental
tensor into two parts, symmetrical and anti-symioelr
corresponding respectively to the gravitational anthe
electromagnetic fields. In 1945, he obtained thie ra

ad,,
oxP

which later became a consequence of the principlaration.

Ow.p A - Ow r:p - O rva =0

Finally, he deduced the equations :
Qup = 0 ; I'p =0 : BUV =0 : BUVJ\ +—R)\U1V +—RV7\:H =0
where T, A %(I’il - ;) is a quadri-vector cancelling itself out

identically in the Riemannian case ;

Rand_Rare the parts, symmetrical and anti-symmetrical, o

Ruw -

In fact, this last equation is only a shortenedsir of the
BIANCHI identity.

In any case, no attempts to generalise the Riermanni
connection ever produces MAXWELL equations for fitee field.
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A.4.4 Memoranda

Concepts in physics :

Free body : this is a body that is not subject to the actioamy force
(including the state of balance, the nil sum oté&s).
Invariance :

A quantity in physics®) is known as an "invariant” if it has
the same value in all the systems of reference :
d(s; t) = D'(s'; 1)
HAMILTON'’s principle :

12

A particle moves in such a way that J. L dt is an extremum ;
t

L being the Lagrangian.
Mathematical concepts :

A few elementary properties of tensors :

1) The properties of symmetry (anti-symmetry) are rralade
to any change of marker.

2) Any tensor may be expressed as the sum of two rtgnso
one being symmetrical and the other anti-symmédtfaraa
pair of co-variant or contra-variant indices.

3) Covariance describes the variation of the functiarfs
coordinates, independently of any reference.

Conjugated or reciprocated tensors :
If g =gl is the determinant of the elementg and if we

assume that ¢ O, the conjugated (or reciprocal) tensor @f &
defined by :

cofactorof g,
g

g 600 = &



93

CHRISTOFFEL Symbols :

. 09, . 99, 09
1°'kind : = 1| ey o "
[Pa . 11= 7 E?xq ox® ax']

2kind : { g} = [pa, 1

Remember that :
lpa.rl=1lap, {5} ={&} : pa. N=0s{ 3}

In particular, if { 5.} is a tensor, it is standard to writefif, .

The CHRISTOFFEL symbols are cancelled out in th#énogonal
systems.

Geodesics :

Geodesics is the topology of space. "Geodesicsthadines
that satisfy the differential equation :

oexr dxP dx?

@@ "ol G o 7O

where s is the distance between two points on uin@limear abscissa
x" of Riemannian space.
Metric : (quadratic fundamental)

The metric is the elementary measurement on theepo:

ds?= gpdX’dx? ; (p,q=1,2, ..., N dimensions)

Properties :

1) Symmetry of the components pqG= Gqp

2) Non-nil determinant {gea| A g # 0

3) Invariance : the metric is invariable to a chan@esaale
marker.

In particular, if @q = O for p# q then the geometry is
Euclidian and the metric is reduced to :

ds2= (dx)2 ; (i=1, ..., N)
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Covariant derivative :
The covariant derivative of a tensAy, in relation tox? is :
0A
Ap,q é axg '{ psq} AS
Similarly, the covariant derivative of a tensaP in relation to

x% is:
p

p
Aq B ox¢

+{ o} A°
Note that :

« the covariant derivatives of°Y, gq andd are nil ;

* in orthogonal systems, the covariant derivatiaes the
usual partial derivatives.

Divergence :

The divergence of Ais the contraction of its covariant
derivative in relation to :
(gAY

1
\/6 oxX

\/5 Is a tensorial density (pseudo-tensor of a unigtg.

divA A AP =

Intrinsic (or absolute) derivative :

The absolute derivative of a vectdy, along the length of a

curve X(t) is defined as the contracted product of theaciewt
q

derivative of A and of ddlt :

dA dx* _ dA dx?
_ P " = Yp _ r
S5t £ Apa g dt {pad A dt
dAP dx¢
- _ OA" p dx?
Similarly : = A A, =
It should be emphasised that the intrinsic deneatiof §° ,

Og and &7 nil (RICCI's Theorem).

dAP dx®
= _ p r---_
ar e A &
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Element of volume :dv = 4/g dx'dx’...dx"

It is invariable for any system of coordinates.
Tensor of curvature : (RIEMANN - CHRISTOFFEL)
Re, 8 Moo Mo ypaps paps 2
ox"  ox*

Through the contraction of this tensor, RICCI's syetrical
tensor is obtained :

RJq = qua
The contraction of the latter provides the scafaiuovature :
R=R"

These tensors are nil in Euclidian geometry.

BIANCHI's Identity : Ry, + R,

par,p

o =
pBa,r + Rprﬁvq =0

This is valid for any symmetrical connection.

A.4.5 LORENTZ Transformations

If we return to (8 1.1.3) we can consider an evehtlight

being produced in an instant t = t' = 0 at poinbfPthe following
figure :

R R'
—\/
*P(x, t; x', t)
X, X X, X, =X

I S -
N /A
o ot

— X ! XI —
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Questions :

1) What are the coordinates of this event for eachhef
reference points ?

2) If one accepts the slowing of the mobile clock, wzdios
link the two scale marks ?

Answers :
The coordinates :

ForR: X

The ratios :
LORENTZ Ratios :

X' = (A.5a)

t=__C (A.5h)

Establishing the ratios :

R' translates the slowing of the clock by : &
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This produces :

i = vt'
1 1_L2
C2
ct'
X2 = >
1V
CZ
X = Xy + X = (c+w)t
V2
1_7
CZ
2
1V
=2t =X +C2 ; of the replacementx € ct the following is
o
deduced :
(A.6a)
>
(A.6b)

It is obvious that the substitution € ct, twice in (A.5a) and
once in (A.5b), refers immediately to the (A.6)ioat This shows

unequivocally that, in uniform translation, the odioates transform
independently of each other.
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A.5 MAXWELL Equations

Formalism :

MAXWELL equation$” consist of the mathematical context
of electrical and magnetic phenomena. On thetledy consist of four
vectors of fields and on the right of four sourcesly two of which
are vectorial. They are written :

|

- . a_ _ —
LUAE + ot M (A.7a)
Je

3
I
ol

OAH - (A.7b)

*

=p (A.7¢)
=1 (A.7d)

]
O =

*

vy}

with : intensity of the electrical field ;

electrical displacement ;

magnetic induction ;

intensity of the magnetic field or field auxijamagnetic
field ;

surface densit§) of the electric current ;

surface density of the magnetic current ;
volumic density of the electrical charge ;
volumic density of the magnetic charge.

It should also be realised that :

* the system (A.7) is local and all the terms famections
of (s; 1) ;

I o O m

— O zl(_nl

(1) established in 1872, published in 1873.
(2) This density (whose current pass over a surfagection) is not to be confused
with the surface sources produced in the discoityimones.
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« OAH =J is AMPERE’s law (1820) ;

. OAE + %—? = 0 is FARADAY'’s law (1831) ;

« the vectorD introduced by MAXWELL in 1862 under the

name of "electrical induction",%—'tD is known as a

"displacement current" ;

« the termsM and T are fictitious sources incorporated in
the equations to simplify their resolution ;

* p exclusively represents free charges, the (fiat#)o
polarisation charges being includedBrand B ;

« J it is the current for free (conduction and conigrx
charges.

Continuity equations :
It can easily be deduced from the (A.7), system tha

7.3+ - (A.8a)
ot

a.m+% -0 (A.8b)
ot

Structural equations :

These are equations that litkto D andH to B in order to
render the (A.7) system soluble. They indicate &hectrical and
magnetic properties of the medium without the seswrcThey are
experimental and generally integro-differential.

For an "instantaneous" and "local" medium, theseatgns
are expressed as :

€
= u

(A.9a)
(A.9b)

ss[Rw]!
1
I me
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e = g(E;s;t) and p= p(H; s;t) designate respectively the
dielectric permittivity and the magnetic permedpibf the medium.

In particular :

* if € and p are independent of the field, one caakspéa
linear medium; as a result :

€ =¢g(s;t) and p= u(s;t);

 if additionally the medium is isotropic and homoges,
this becomes :
e =¢gt) and p= p();

o furthermore, if € and p are independent of time, the
medium is known as "simple", and produces :

€ = && and U= WMo

where g, and | are specific, bitmapped constants that are
generally complex, they are the equivalent of a imia
vacuum.

Comment :
1) The linearity of the medium implies that of the teys

(A.7). This means that the effects of the sourtwes fields)
are rendered superposable.

2) The presence of known sources in an homogemeaksum
does not affect its homogeneity.

Electromagnetic power :

The "surface density of electromagnetic power" b t
“intensity of the flow of energy” is known as POYNMIG’s vector
(1884) :

B

m
@\‘H >

H [W/m?] = % (EE2 + pH2) v;

v = (propagation speed).
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In particular, forv = ¢, theresultis:E+H =0
2> B2 = poH?
Comment :

This power of diffusion is manifestly differenton that of
penetration according to PLANCK (I.6a). The firsta function of
several variables, such as the power of the sowdcereas the second
only depends on the frequency.
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A.6 FOURIER Transforms

Specific notes on the subject :

Abbreviations :

TF Direct FOURIER Transforms
TF! Inverse FOURIER Transforms

Notations :
f radius of FOURIER space vector :

f=fit ; (=1,2,...,N)
F _  application of TF

—< -

F*  application of TR

Written convention :

Unless explicitly stated otherwise, FOURIER Tramsfs of
functions are printed in bold.

A.6.1 Analogical Transforms

Definitions :

If x is a real variable and g(x) a periodic fuocti (or
distribution) satisfying the DIRICHLET criteria af it is aperiodic
and locally integrabl@, the TF of such a function is expressed as :

000 F o) A | g expl2rix) dx

00

o) F'o 96D | olf) exp(2rix) df

—00

(1) in the meaning of RIEMANN for the functionscahEBESGUE-integrable for
the distributions.
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Where gf) is a function at N independent variables, it
becomes :

00

9x)  F_ of) =f j g(X) exp(j2mf * X) dx,...dxy

—00 —00

oGf) F'_ g(x) =f j g(f) exp(j2mf + X) dfs...dfy
Bijection property :
If gi(X) = g2(x) then gi(f) = go(f) and the inverse.
Domain of validity :
Apart from mathematics, FOURIER Transforms aredvédr
any ratio in physics.

Applications :
DIRAC functions :

O(x - pX) exp(-j21fx) dx = i exp(-j21d » pX)

p=—o

&(x-pX) _F_

8

8

=% 5(f - %) - (k=0,£1,+2, ... 20)  (A.10a)

In particular, forp = 0, the result is :
o) F_ 1 ﬁ» f exp(j2mfx) df = d(x) (A.10b)
This being the case, the identities are designated
509 = | exp(i2rx) df (A.11a)

5(f) = f exp(-j21fx) dx (A.11b)

—0o



Convolutions :

q(X)(X)  F u(f) « ga(f)
w(F)A(f) _F*' gu(X) < g(X)

Periodic functions :

aX1 - PXg, e %o PXn) 5 (P P2 -, U=0,21, %2, L,

o(f) exp(-j2mf + X)
Derivatives :

Mono-variables functions :

dg(x) W
o F g
Demonstration :

o(f) = j g(x) exp(-j2mx) dx > % =0
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(A.12a)
(A.12b)

)

(A.13)

(A.14a)

dg(f) J’ [dg(x) exp(-j21tx) - j21¢ g(x) exp(- 12nfx)] dx

Hence the ratio in view.

ag(x)

Generalisation :
dxn

~F ()" o)

Demonstration of the formula (111.6a) :

> | 959 ep(iant) ax = jort | g(x) exp(i2n) dx

(A.14b)

The application of TF to the two members of themfola

implies :
(2rf)" o(f) = o(f) - (2r)"

This equality and the bijection property prove fbemula in

guestion.
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Multivariable functions :
0"g(X)
0™ X, ...0™ X,

(M=m+m+..+m)

F 2™ ™ g(f)

Vectorial derivatives :

(X) = ZN: g(x)a F g(f) = Z gi(f) G

i=1 i=1

g
Orgx) & jomf «g(f)
O-g(x) _F _ jonf -g(f)
OAg(X) _F _ jenfAg(f)
A.6.2 Digital Transforms
The TF of a digital function is analogic :
gmax) & _ o)

The digitisation of the latter is taken from thebstitution
f € WAf :

awAf) A g(f) O(f - wAf) ; (w=0,£1,%2, ...,+0) (A.15)
Property of periodicity :

The TF of digital functions are periodic : TF iﬁ; and TF

in -1
in A
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Corollary :
The periodicity ofg(f) in A_lx terminates the variation at :

1
AXx Af

(A.16)

The DIRAC set :

O(x - pvAX)  F Jgo O(x - pvAX) exp(-j21x) dx

—00

= Ax S exp(-j21tf < pvax) = L §(f- —K_):
p;o v ( vAX

(k=0zx1,%2, ...,+x0)
Typical functions :

Mono-variable function :
gmax) _ F _ gf) = j g(x) d(x - mAX) exp(-j21x) dx
= Ax Y g(mAX) exp(-27f - mAX)

The substitution f€& wAf, the (A.16) ratio and the
m [ [0, M] interval induce the final expression oéttligital TF :

gWAf) = Ax i g(max) exp(-2m¥m) ;

w=0,1,2, .., W) (A.17a)

As for TFY, the same procedure involves :

g(f) &( f - WAF) exp(j2rix) df

1
o=

gwAfd) _F*'_ g(x)

W
Af D g(wAf) exp(2TxwAf)
w=0
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This, the substitutionx € mAx and the equality (A.16)

give :
1 v o Wm
9m) = i - gwa) exp (i)
(m=0,1,2,..., M) (A.17b)
On the other hand, the periodicity of g{r) A_lf releases the
equality thereof : Mix = A_lf (A.18)

The latter and (A.16) equalise M to W. In this, thenber of
measures in the original space is always the sanire the FOURIER
space.

Multivariable function :

The generalisation of the transforms (A.17) inteatiables is
imminent :

My
gWaAfy, ..., WAFY) = AXp . AXy D
m=0
Uy [ w,m W, m
g(MAXg, ..., MAXy) exp —127{ Ly + N
%O " W1 WN

w;=0,2,2, ..., W ...; ww=0,1,2, ..., W) (A.19a)

1 A}

AX1, ..., MYAXy) =
9(maxs, ..., MiAx,) W,AX, .. W AX WZO

Wy ) w.m W, m
WiAfq, ..., WATy) expl j2 LIy +—DN Ny
W%)O g(W1Afy, ..., WAfy) I{J n( m W, H

Mm=0,1,2, ... M....; m=0,1,2, ..., M) (A.19b)
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Convolution :
The result of the ratios (lll.3b) and (A.12) is :

01(MAXy, ..., MAXY)CG(M1AXy, ..., MAXy)
F g]_(W]_Afl, . WNAfN) X gz(WlAf]_, ey WNAfN)

The TF* can be found in the same way.

Derivatives :

In the same way that the (A.14) formulae were destrated,
the following is deduced :

5V(x - mAx) F _ (2mh)" a(f-ﬂ)
(W= 0,£1, +2, ..., +x) (A.20a)
dmax) F _ (21)" g(f) 8(f - wAf) (A.20b)

Demonstration of the (Il1.6b) ratio :

The application of TF to the two members of thed saitio
produces equality :

(j2rf)" o(f) = o(f) (2r1)"

This and the bijection property corroborate themiola
(111.6b).
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Digital values

Constants :

Fundamental constants :
9

6 [is*/m® = F/m]

802

Ho A 411107 [m¥js® = H/m]

Yo =~ 1.19261 10° [js*/m’]
1

Amy

G=

Fundamental measurements :
h =~ 6.62617610°*j]
Ho=~ 2.42718510%[1/s]
Absolute constants :

a =~ 2.4386333 107 [m/]]

~

>
~ 6.67256: 10" [m°/js”]

b ~ 1.22934619666 10" [j/s]

c A 310 [my/s]
Measurements :
h

12

k ~ 1.380662 10%[js]
k =~ 1.380662 10%3[j]
Limits ;
PLANCK s natural units

At ~ 5.39:10*[s]
As =~ 1.616<10% [m]
Ae ~ 6.626176:10°*[j]

6.626176:10%[js] & # = 1. ~ 1.054589 10% [js]
2n

HUBBLE's cosmic units :

AT =~ 4.12<10" [s]
AS =~ 1.236<10%°[m]
AE =~ 5.0649< 107’ [j]
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Large circles of the universe :
T ~ 41107 ]3]
S~ 12n<16%° [m] 2>

hypothetical radius of the universR :=~ 6« 10°® [m]

1

E =~ 1.54482:10%[j]



