1. MATHEMATICAL
TOOLS

Digitisation and resolution
of linear differential equations
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I11.1 Digitisation of variables

N.B.:
This tool, used in physics, employs certain mathésal

concepts in terms of its internal logic.
111.1.1 Independent Variables

General remarks:

Certain authors (non-mathematicians) confuse disoaty
with the digital, function with distribution and ew a set and a series.
In order to make things clear :

» Ratiorefers to a function or distribution.

« Only the family ofapplications™ of ratios is of interest here.

» The following definitions are applied here :

o Digital variable, the monotonous set &f ;

o Digital function, a function containing digital variables ;
° Analogical function, any application that uses continuous
variables (admitting dx).

It should be mentioned in passing that punctuabsatuch as
the function3(x) or the set3(x - pX) of DIRAC are analogf®.

(1) As a reminder, an application is a surjective-fhefhded and univocal ratio
(X~ Q).

(2) pOZ (to simplify) and X is the period. According to SCHWARTZ, 3(x) is
a function but its derivatives are distributions.
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Concerning discontinuity :

Normally, discontinuity is an epithet used to dészrratios
that are non-derivative in certain respects. Aahsiouity such as this
poses no problem for digitisation. To be more dpediscontinuity is
a vertical fracture that, at one point in the Malea produces two
different values for the ratio. This type of distionity is the subject
of distributions”, at least for physicists. For this purpose, the
digitisation process needs to be adapted slightly.

Concerning the variation :

Let there be a ratio g(x) between two variables being
independent and with uniform increase (at constaniation) and g
being dependent on x. This ratio translatks variation of g in
relation to x in three forms : analytic, graphicdigital. When g(x) is

analytical and indefinitely derivableg—g is used to designatke rate

or speed of this variation, through (;L;gz the rate of the rate of
variation and so on. It should be pointed out imiaety that the
significant interest of a FOURIER transform is e ttranscription of
a differential into an algebraic term.

Dyadic spaces :

It has been established that the binary numBeasid 1 are the
simplest, most intuitive and most natural numbensceivable. These
two fundamental stat€sof understanding constitute the basis for any
digital mathematical construction and formal logic.

A number containing N binary figures representsdi#ferent
states. In dyadic terms, a space having N dimesstmmprises "2
points (or positions). These positions, orderedoating to their
decimal values, constitute a preponderant setgatliprocessing.

(1) Do not confuse the discontinuity of distributiavith the continuity of their
variables.
(2) The statement and its negation such as "ye§ia, "true" or "false", etc ...
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Digital variation :

The variable m] 7 , discrete by definition, does not accept
analytical operators such as derivation and intemra It is
consequently excluded from equations in physicsoV¥ercome this
difficulty, m is associated with the continuous sof x in the
following manner :

AX

| N D S N N S B B N N D B B = m, X

-3-2-1 012 3

(Fig. lll.1a)

where Ax mathematically represents the unit. It is thespge from
"discrete digitisation” to "analytic digitisatiomtedicated to the
substitution m € mAx. On the other hand, the switch from
continuous to digital via & mAx is known as "digitisation”. It
assigns toAx the relationship of scale between x and m. Riné#he
term "associated digital variable " or more sinfplidigital variable"

Is assigned to the conceptAm

Variation interval®:
Digital calculation uses finite values of variableand
functions. This terminates the variation intervafallows :
x[[a,b] ; b-aAX
It is always desirable in this case to restricitdigtion to this interval
and, if possible, to make the origins @f and m coincide. Where

these origins are fatally separate, the substitutio € X + mAX
takes their place :

(Fig. 111.1b)

(1) without possible risk of confusion.
(2) It corresponds physically with the field of obsaien, action or measurement.
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Note that the property of periodicifgee A.6.2)of FOURIER
digital transforms make it possible to begin theenmals of x and f
at the origin of these coordinates. The resulthet X, like F (the
equivalent ofX over f) are virtually nil.

Sampling :

If digitisation is a sort of change of variable €« mAx ; Ax
being the indivisible step of the measurement) iadplinrestrictedly
to the axis of x, sampling is a technique to bgliad to the interval
X, one that should satisfy the dyadic requirement :

M=22-1 ; Méi
AX

int
Furthermore, if M is too large, the choice oAx must

maintain the variation of the function being pramss with a single
AXx that is less than the measurement threshold.

111.1.2 Dependent variables (functions)

Description :
Definition :

Like the digital variable, the standard applicat@mAx). is
known as the "associated digital function” or siynphe "digital
function".

Criteria:

1) The analogical function and its digital version rehghe

same analytical properties.

2) The digital function must be locally integrafile

3) Unlike the variable, the digital function may takey finite
value.

(1) Suitably digitised distributions are alsceigtable within the meaning attributed
to them by RIEMANN.
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Comment :

All analogical ratios originating in physics can benverted
into digitals.

Integration .
This is the function defined by : g(m)|a form=0;
0 elsewhere.
g(m)
A
a4
L L L 1T 1T 17T 17T 1T1 - m,X
3-2-19p12 3
(Fig. lll.2a)

It is obvious that the Riemannian integration ds tfunction
over X is nil. This means that g(m) is indepamdf x and devoid
of analytical meaning. In order to appropriate Yyfor integration,
one must resort to the substitution €4 mAx so that it produces :

g(m\x)

AX

1 T 1 —r 1 - mAX
-3-2-101 23

(Fig. 111.2b)

Ax
)

_[g(mAx) dx = a_[ dx = aAx (111.1)

—00
2
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Functions of DIRAC :
Analogical expression :

It is normal to use the term DIRAC "impulsion" (or
measurement) to describe the function :

o(x) = [1 forx=0;

0 elsewhere.

The uniform repetition (at constant interval) of isth
measurement generates the set :

O(x-pX) =| 1 for x=pX ; (p=&1,%2, ...,10)
0 elsewhere.

This set, as well as the impulse, are devoid ofnfaienian
integration.

Digital version :

The digitisation of the x axis will verify the edig of :
X = vAx ; v being a whole number.

O(X - pvAX)

——t—t——— m, X

-M -32-10123

vAx (Fig. 111.3)

Integration :

The previous set is only integrable on an inteteaminating
in X, [-M, M] for example, the result of the formuyl&l.1) is :
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MAX M

j O(X - pvAX) dx = Zv: O(X - pvAX) AX = (1 + ZM) AX
N o] v

Typical functions:

Mono-variable function :
Let there be the function :

g(mAXx)
A

VARRN

/ \

/ \

||kv|||||/||||||||||||||\||||=mAX
S = 2-1p123 \

N\
\h—
(Fig. lll.4a)

The substitution mx € x incontinently restores the
analogical version :

g(x)
|

AX
II\IIIIIIIIIIIIIIIIII

3-2-10123

(Fig. 111.4b)
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g(mAX) is commonly expressed as follows :

g(mx) A g(x) d(x - mAXx) ; (m=0x1,%2, ...,+0) (1n.2a)

with : d(x - mAXx) A | 1 for X = mAX ;
0 elsewhere.

Integration

Assuming that g(x) is integrable, this produces :
j g(mAXx) dx = j g(x) 8(X - mMAX) dx = AX i g(mAX)

Multivariable function®®:
Let us consider the function :
g(MAX1, ..., MAXy) A g(X) 3(X1 - MAX1)...8(Xy - MyAXy)
(mg, My, ..., my=0,%£1,£2, ...,0) (1.2b)

Integration

j j g(X) (X1 - MAX)...8(Xy - MuAXy) dX0Xo ... 0%y

00 00

= AXp..AXy D o D g(MuAXy, .., MAXy)

m =-c my =-o00
Convolution :
Analogical expression :

The product of the convolution of two mono-variahlactions
is written as :

00 B | 0u®) Gac)

(1) Itis convenient to transcribe the multivateafunctions into multi-dimensional
spaces.
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In the case of a multivariable function, it is it :

G(R)AR) = [ oo [ 0u(E) (R-E) ...

Digital version :

Along the same lines of development, the followran be
deduced :

00

gu(MAX)Lh(MAX) = Ax > gu(kAx) ge[(m - K)AX] ;

k=-00

(M =0,+1, 42, ..., +w) (11.3a)

01(MAXg, ..., MAXY)G(M1AXy, ..., MAXy)

00 00

= AX1...AXy Z C. Z g]_(klAX]_, vy kNAXN)X

k= -00 ky = -0
Q[ (M1 - K)AXq, ..., (M - ka)AXN)] ;
(mg, M, ..., my=0,%£1,£2, ...,0) (111.3b)

Periodic functions:
Analogical expression :
A mono-variable periodic function is expressed :
9(x) A g(x - pX) = G(X)B(X - pX) ; (p =021,%2, ..., %)
(11.4a)
where g(x) is the main period defined onlX [0, X].

Comment :
A periodic function is continuous if 1) = g(X) and
discontinuou’ in the opposite case.

Where the periodicity is multivariable, the regslt
9(X) = g(x1 - PX1, ooy % - PuXn)
= u(X)B(X1 - pX1)0... [B(Xn - X)) ;
(P p2--o, v =0,£1,£2, ..., %) (111.4b)

(1) Itis possible for gX) itself to be discontinuous (a distribution).
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Digital version :

Since the periodic function is defined by its madariod,
sampling is limited to this period. As a result :

a(mAX) = g(X) d(x - mAX) ; (m=0,1,2,...,M) ;
MAX = X (111.5a)

G(MAX, ..., MAXy) = q(X) 8(X1 - MAXy) ...0( Xy - MyAXy)
(m=0,1,2,...M; ..., m;y=0,1,2, ..., M) (11.5b)
Aperiodic functions:

Let the function gx) be continuous and locally integrable :

92(X) a(x)
ml [ m L o M, X
3-2-1¢1 23 AX X \

(Fig. lll.5a)

Let us only consider the p&ttgi(x) over x I [0, X] of ga(x).
This can be tackled in two ways :

1) By replacing g(x) with the above periodic functiéh
9(x) = g1(X)DB(x - pX) ; (p=0x£1,%2, ...,%x)
which can be digitised in accordance with (11.5a).

(1) Itrecalls the field of action mentioned above
(2) This is justified by the fact that g(x) reprmes g(x) all along the axis x.
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At any event, the property of (A.6.2) converts athgitised
function into a periodic function having the intahof variation as the
period.

2) If we multiply g(x) by the functiorm(x) :

A
&(X) M(x)

1 .

\)/ X T

(Fig. 111.5b)

this immediately produces :1(g) = M(x) = g2(X)

%) /Q(X)\/(\

T T T T T T T N T L L L L L L L L L L L e \IV m,X
12 3 AX X

(Fig. 111.5¢)

Derivatives:

The following formulae are shown respectively ingA) and
(A.6.2) :

d"(x) = ge)B™(x) (11.6a)
gdV(mAx) = g(mAX)B™V(x) ; (m =01, +2, ..., +o0) (111.6b)
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111.2 Resolution of the equations

To simplify this essay, we shall restrict ourseltesmono-
variable equations.

111.2.1 Algebraic equations

Equation lacking a second member :

Consider the equation :

gX)(X -&)(X - &2)...(x - &) = 0 ; g(x)# O (H.7a)
This permits the following solutions :
g(X) = @ (X - &1), @O(X - &2), ..., & O(X - &) (111.7b)

in which a, &, ..., & are arbitrary constants in the absence of the

initial conditions. The latter must correspond torps &1, &2, ... and
be limited in number to K.

In digital form, the arbitrary constants are préalide. They
are assigned the default unit where the initialdittons are lacking.
In this order, the equation (111.7b) is written :

g(mAX) = d(X - MAX), (X - MpAX), ..., 0(X - mkAX) (lll.7¢)
Two-member equation :

Let 1 g)(X -§2)(X - &2)...(x - &) = p(X) (I1.8a)

It can be seen that where x¢xor x =¢& ..., the equation
loses its second member :

p(x) € 0 and g(X)= & d(X - &1), @A(X - &2), ..., & (X - &)
Outside the point£y, &2, ..., this produces :

p(x)
(X-E)(X-8&,)-(X-E)

9(x) =
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In the same way, the general solution of the eqnatill.8a)
produces the following result :

_ _ ) _ p(x)
00) = 2B - &), 2B &), -1 ABK &) T pn s
(111.8b)
The digital version of this equation is written :
— sy ) p(mAX)
g(mAX) = d(X - MAX), ..., (X - MAX), (X-MAX)...(X-MAX)
(1.8c)
111.2.2 Differential equations
General form:
A linear differential equation is expressed as :
a dr-
P00 T 4 g g LW 4+ o 990
Po(X) 9(x) = p(x) (111.9)

where pr(X), ..., p(X) and p(x) are known functions. It is fascinating
to recall that the origin of this equation lies physics, all of the
components being locally integrable.

The digitisation of (l1.9) results from the sulstion :

X € mAX ; (m=0z1,%£2, ...,20)

Resolution schematic :

The equation (111.9) can be solved in four stages :
1) Digitising the equation by determiningx and M ;
2) Applying TF(see A.6}o all its members ;

3) Separating the knowns from the unknowns ;

4) Proceeding to TE
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Example:

For the sake of simplicity, let us make do with "d @egree
equation :

po0) S 4 pi) 9D s pg g =) (1110a)

The digitisation thereof for a terminated intergabduces :

p2(MAX) ng((jr)r(lex) + p(MAX) dg(mAx)

Po(MAX) g(MAX) = p(mMAX) ; (m = O, 1,2,...,M)

The application TF produces :

p2(WAF) L[ (j2rwAf)2 g(wAf)] + pa(wAf) [ (2rwAf) g(wAf)] +

Po(WANYWAR) = pwAf) ; W=0,1,2, ..., W)>
Af f‘, ol(w - K)AT] { pa(kAf) 121w - K)AFI2 + pa(kAf) [i2T(w - K)AT]

+po(kaf)} = p(waf) ; wW=0,1,2,..., W) (111.10b)
The periodicity ofg(w) in W enables the substitution :
gl(w - K)Af] € g[(W +w - kK)Af] where w<k

As a result, the variation of w in the equationl.{0b)
generates an algebraic system, from W + 1 lineanatans,
containing unknowrty W of the type g(wAf).

The resolution of the latter results in the funesia(wAf)
which with the help of TE, serve to reconstruct the function g(x).

Example of calculation :
Let Af {pz(kAf) [i2T(w - K)Af]2 + Py(KAS) [[2 1w - K)Af] +
po(kAf)} = @waf, kAf)

(1) Because the continuity af(f) implies : g(0) = g(W).
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The following is deduced for :
w=0:
g(0) @0, 0) +g[(W - 1)Af] @0, Af) + ... +g(0) @0, WAF) = p(0)
w=1:

g(Af) @Af, 0) +g(0) @A, Af) + ... +g(Af) @A, WAF) = p(Af)

w=W:
g(WAfF) @WAT, 0) +g[(W - 1)A] @WAT, Af) + ... +
9(0) @WAf, WAf) = p(WAT)
Remembering thag(WAf) = g(0) and p(WAf) = p(0).
This system is finally shown as :

@00(0) + G O(AR) + ... + Govsy OLW - DAR)] = p(0) )
C09(0) + 1 g(Af) + ... + Gy 9l(W - 1)A)] = p(Af)
| (111.10¢)
| >
Cw-109(0) + Gwapn 9(Af) + ... +
Cow-y w- (W - DAR)] = p[(W - 1)Af)]
Cwo 9(0) + Gu1 9(AF) + ... + Guw O[(W - 1)Af)] = p(0) )

in which ¢, are numbers.

Special case:

For p(m\x) = 0, the system (lll.10c) accepts non-trivial
solutions since two, and only two, of its equati¢tine first and last)
are linearly dependent.



