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IIIIII..11  DDiiggiittiissaattiioonn  ooff  vvaarriiaabblleess  
 
 

N.B.: 
 This tool, used in physics, employs certain mathematical 
concepts in terms of its internal logic.  
 

III.1.1 Independent Variables  
 

General remarks : 
 

 Certain authors (non-mathematicians) confuse discontinuity 
with the digital, function with distribution and even a set and a series. 
In order to make things clear : 
 

•  Ratio refers to a function or distribution.  
 

•  Only the family of applications(1) of ratios is of interest here.  
 

•  The following definitions are applied here :  

   ◦  Digital variable, the monotonous set of  ള ;  
   ◦  Digital function, a function containing digital variables ;  
   ◦ Analogical function, any application that uses continuous 

variables (admitting dx).  
 

It should be mentioned in passing that punctual ratios such as 
the function  δ(x)  or the set  δ(x - pX)  of DIRAC are analogic(2).  
 

 
 

____________________________________________________________________ 
(1)  As a reminder, an application is a surjective left-handed and univocal ratio         

(x a g).  

(2) p ∈ ള  (to simplify) and X is the period. According to L. SCHWARTZ,  δ(x)  is    
a function but its derivatives are distributions. 
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Concerning discontinuity : 
 

Normally, discontinuity is an epithet used to describe ratios 
that are non-derivative in certain respects. A discontinuity such as this 
poses no problem for digitisation. To be more specific, discontinuity is 
a vertical fracture that, at one point in the variable, produces two 
different values for the ratio. This type of discontinuity is the subject 
of distributions(1), at least for physicists. For this purpose, the 
digitisation process needs to be adapted slightly.  
 

Concerning the variation : 
 

Let there be a ratio g(x) between two variables : x being 
independent and with uniform increase (at constant variation) and g 
being dependent on x. This ratio translates the variation of g in 
relation to x in three forms : analytic, graphic or digital. When g(x) is 

analytical and indefinitely derivable,  
dx
dg

  is used to designate the rate 

or speed of this variation, through  
²dx
g²d

  the rate of the rate of 

variation and so on. It should be pointed out immediately that the 
significant interest of a FOURIER transform is in the transcription of 
a differential into an algebraic term.  
 

Dyadic spaces : 
 

It has been established that the binary numbers  0  and 1 are the 
simplest, most intuitive and most natural numbers conceivable. These 
two fundamental states(2) of understanding constitute the basis for any 
digital mathematical construction and formal logic.  
 

A number containing N binary figures represents 2N different 
states. In dyadic terms, a space having N dimensions comprises 2N 
points (or positions). These positions, ordered according to their 
decimal values, constitute a preponderant set in digital processing.  

 
 

____________________________________________________________________ 
(1) Do not confuse the discontinuity of distribution with the continuity of their 

variables. 
(2)  The statement and its negation such as "yes" or "no", "true" or "false", etc …  
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Digital variation : 
 

The variable m ∈ ള , discrete by definition, does not accept 
analytical operators such as derivation and integration. It is 
consequently excluded from equations in physics. To overcome this 
difficulty, m is associated with the continuous axis of x in the 
following manner :  
 
        ∆x    

ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı             m, x          
-3 -2  -1   0   1   2   3 

 

(Fig. III.1a)   
 

where  ∆x  mathematically represents the unit. It is the passage from 
"discrete digitisation" to "analytic digitisation" dedicated to the 
substitution  m � m∆x. On the other hand, the switch from 
continuous to digital via x � m∆x  is known as "digitisation". It 
assigns to  ∆x  the relationship of scale between x and m. Finally, the 
term "associated digital variable " or more simply(1) "digital variable" 
is assigned to the concept  m∆x.  
 

Variation interval(2): 
 

Digital calculation uses finite values of variables and 
functions. This terminates the variation interval as follows : 

   x ∈ [a, b]  ;  b - a  ∆ X 
 

It is always desirable in this case to restrict digitisation to this interval 
and, if possible, to make the origins of  x  and  m  coincide. Where 
these origins are fatally separate, the substitution  x  �  X + m∆x  
takes their place :  
 
                          X             a                     ∆x                     b   

       |                         |   ı ı ı ı ı ı ı ı ı ı |                    m, x   
       x = 0                       m = 0   1  2   3                                 M  
  

       (Fig. III.1b)   
____________________________________________________________________ 
(1)  without possible risk of confusion. 
(2)  It corresponds physically with the field of observation, action or measurement. 
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Note that the property of periodicity (see A.6.2) of FOURIER 
digital transforms make it possible to begin the intervals of   x  and  f  
at the origin of these coordinates. The result is that X, like F (the 
equivalent of  X  over  f) are virtually nil.  

 

Sampling : 
 

 If digitisation is a sort of change of variable (x � m∆x ; ∆x 
being the indivisible step of the measurement) applied unrestrictedly 
to the axis of  x, sampling is a technique to be applied to the interval  
X,  one that should satisfy the dyadic requirement :  
 

    M  =  2N – 1   ;   M  ∆  
int

 
x

X

∆
 

 

Furthermore, if M is too large, the choice of  ∆x  must 
maintain the variation of the function being processed, with a single 
∆x  that is less than the measurement threshold.  
 

III.1.2 Dependent variables (functions) 
 

Description :  
 

Definition : 
  

Like the digital variable, the standard application g(m∆x). is 
known as the "associated digital function" or simply the "digital 
function". 
 

Criteria : 
 

1) The analogical function and its digital version share the 
same analytical properties.  

 

2) The digital function must be locally integrable(1).  
 

3) Unlike the variable, the digital function may take any finite 
value.  

 
 

____________________________________________________________________ 
 (1)  Suitably digitised distributions are also integrable within the meaning attributed    

to them by RIEMANN. 
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Comment : 
 

All analogical ratios originating in physics can be converted 
into digitals.  
 

Integration : 
  

This is the function defined by :  g(m)  =   a  for m = 0 ;  
     0  elsewhere. 
 

               g(m) 
 

 
 
        
    a      
        
 

   ı ı ı ı ı ı ı ı ı ı ı ı ı ı                       m, x                           
-3  -2  -1  0  1   2   3 

 

       (Fig. III.2a) 
 
 

It is obvious that the Riemannian integration of this function 
over  x  is nil. This means that  g(m)  is independent of  x  and devoid 
of analytical meaning. In order to appropriate  g(m) for integration, 
one must resort to the substitution  m  �  m∆x  so that it produces :  
 

       g(m∆x)  
 

 
         
                 a       
     
      
       ∆x    

                     ı ı ı ı ı ı ı ı ı ı ı ı ı ı                    m∆x   
     -3 -2 -1  0  1   2  3      
         

        (Fig. III.2b) 
 

     ∫
∞

∞−

    

g(m∆x) dx  =  a ∫
∆

∆−

2
x

2
x

  

dx  =  a ∆x            (III.1) 



 61

Functions of DIRAC : 
 

Analogical expression : 
 

It is normal to use the term DIRAC "impulsion" (or 
measurement) to describe the function :  

 
             δ(x)  =     1  for x = 0 ;  

                0  elsewhere. 
 

The uniform repetition (at constant interval) of this 
measurement generates the set :  

 

δ(x - pX)  =    1  for  x = pX  ;  (p = 0, ±1, ±2, …, ±∞)  
            0  elsewhere. 

 
 

This set, as well as the impulse, are devoid of Riemannian 
integration. 
 

Digital version : 
 

The digitisation of the x axis will verify the equality of :         
X  =  ν∆x  ;  ν being a whole number. 
 

               δ(x - pν∆x) 
 
        

       
           1 

      
           
         ∆x  

          ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ  ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı               m, x 
   -M                   -3 -2 -1  0  1  2  3             M 
         
              ν∆x    (Fig. III.3) 
          

Integration : 
 

The previous set is only integrable on an interval terminating 
in  x, [-M, M]  for example, the result of the formula (III.1) is :  
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  ∫
∆

∆

xM  

xM-

δ(x - pν∆x) dx  = ∑
=

ν
M

ν
M - p

δ(x - pν∆x) ∆x  =  (1 + 2
ν
M ) ∆x  

 

Typical functions : 
 

Mono-variable function : 
 

Let there be the function : 
 

        g(m∆x) 
     
 

 
         
   
 
 
 
                   ∆x   

          ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ  ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı            m∆x
                                    -3 -2 -1  0  1  2  3   
         
   
 

       (Fig. III.4a)       
 

The substitution  m∆x � x  incontinently restores the 
analogical version :  

 

             g(x) 
 
         
   
 
 
 
                         ∆x   

          ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ  ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı            m, x
                      -3 -2  -1  0  1  2  3   
         
   
 

       (Fig. III.4b)   
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g(m∆x) is commonly expressed as follows : 
 

        g(m∆x)  ∆  g(x) δ(x - m∆x)  ;  (m = 0, ±1, ±2, …, ±∞)       (III.2a) 
 

with :  δ(x - m∆x)  ∆     1  for x = m∆x  ;  
      0  elsewhere. 

 

Integration : 
 

 

Assuming that  g(x)  is integrable, this produces :  
 

       ∫
∞

∞−

    

g(m∆x) dx  = ∫
∞

∞−

    

g(x) δ(x - m∆x) dx  =  ∆x ∑
∞

∞=  - m

g(m∆x)  

 

Multivariable function(1): 
 

Let us consider the function : 
 

     g(m1∆x1, …, mN∆xN)  ∆  g(x
r

) δ(x1 - m1∆x1)…δ(xN - mN∆xN)  
  

 

 (m1, m2, …, mN = 0, ±1, ±2, …, ±∞)           (III.2b)
  

Integration : 
 

   ∫
∞

∞−

    

… ∫
∞

∞−

    

g(x
r

) δ(x1 - m1∆x1)…δ(xN - mN∆xN) dx1dx2 …dxN  

  =  ∆x1…∆xN ∑
∞

∞= -  m1

. . . ∑
∞

∞= -  mN

g(m1∆x1, …, mN∆xN)  

 

Convolution : 
 

Analogical expression : 
 

The product of the convolution of two mono-variable functions 
is written as : 

                  g1(x)∗g2(x)  ∆ ∫
∞

∞−

    

g1(ξ) g2(x-ξ) dξ 

  

 

___________________________________________________________________ 
(1)  It is convenient to transcribe the multivariable functions into multi-dimensional 

spaces. 
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In the case of a multivariable function, it is written :  
  

 g1( x
r

)∗g2( x
r

)  = ∫
∞

∞−

    

… ∫
∞

∞−

    

g1( ξ
r

) g2( x
r

- ξ
r

) dξ1…dξN   

Digital version : 
 

Along the same lines of development, the following can be  
deduced : 

g1(m∆x)∗g2(m∆x)  =  ∆x ∑
∞

∞=  - k

g1(k∆x) g2[(m - k)∆x] ;  

                          (m = 0, ±1, ±2, …, ±∞)           (III.3a) 
 

g1(m1∆x1, …, mN∆xN)∗g2(m1∆x1, …, mN∆xN)  
 

        =  ∆x1…∆xN ∑
∞

∞= - k1

. . . ∑
∞

∞= -  kN

g1(k1∆x1, …, kN∆xN)*  

 g2[(m1 - k1)∆x1, …, (mN - kN)∆xN)] ; 
  

 (m1, m2, …, mN = 0, ±1, ±2, …, ±∞)         (III.3b) 
 

Periodic functions : 
 

Analogical expression : 
 

A mono-variable periodic function is expressed : 
 

    g(x)  ∆  g(x - pX)  =  g1(x)∗δ(x - pX)  ;  (p = 0, ±1, ±2, …, ±∞) 
          (III.4a) 

where g1(x) is the main period defined on x ∈ [0, X].  
 

Comment : 
A periodic function is continuous if g1(0) = g1(X) and 

discontinuous(1) in the opposite case.  
 

Where the periodicity is multivariable, the result is : 
 

 g(x
r

)  =  g(x1 - p1X1, ..., xN - pNXN)  
 

           =  g1( x
r

)∗δ(x1 - p1X1)∗ … ∗δ(xN - XN) ;  
    

   (p1, p2 …, pN = 0, ±1, ±2, …, ±∞)         (III.4b) 
 

____________________________________________________________________ 
(1)  It is possible for g1(X) itself to be discontinuous (a distribution).  
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Digital version : 
 

Since the periodic function is defined by its main period, 
sampling is limited to this period. As a result :  

 

    g1(m∆x)  =  g1(x) δ(x - m∆x)  ;  (m = 0, 1, 2, …, M)  ;  
 

         M∆x = X         (III.5a) 
    

    g1(m1∆x1, …, mN∆xN)  =  g1( x
r

) δ(x1 - m1∆x1) …δ( xN - mN∆xN) 
 

      (m1 = 0, 1, 2, …, M1 ; …;  mN = 0, 1, 2, …, MN)        (III.5b) 
 

Aperiodic functions : 
 

Let the function  g2(x)  be continuous and locally integrable : 
 
                 
    g2(x)      g1(x)     
  
           

ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ  ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı       m, x
          -3 -2 -1  0  1  2  3        ∆x            X  
 
          

       (Fig. III.5a) 
 
 

Let us only consider the part(1) g1(x) over x ∈ [0, X] of g2(x). 
This can be tackled in two ways :  

  

1) By replacing  g2(x)  with the above periodic function(2):  
 

      g(x)  =  g1(x)∗δ(x - pX)  ;  (p = 0, ±1, ±2, …, ±∞) 

 

which can be digitised in accordance with (III.5a).  
 
 
 
 

____________________________________________________________________ 
(1)  It recalls the field of action mentioned above.  
(2)  This is justified by the fact that g(x) reproduces g1(x) all along the axis x. 
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At any event, the property of (A.6.2) converts any digitised 
function into a periodic function having the interval of variation as the 
period.  

 

2) If we multiply g2(x) by the function Π(x) :  
 
                 
    g2(x)       Π(x)     
    1 
           
                  x  
           

         0              X 
         

(Fig. III.5b) 
 
 

  this immediately produces :  g1(x)  = Π(x)*g2(x)  
 

                 
    g2(x)      g1(x)     
  
           

ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ ഀ  ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı       m, x
           -3 -2 -1 0  1  2   3       ∆x            X  
 

       (Fig. III.5c) 
  
      

Derivatives : 
 

The following formulae are shown respectively in (A.6.1) and 
(A.6.2) : 

    g(n)(x)  =  g(x)∗δ(n)(x)          (III.6a) 
 

     g(n)(m∆x)  =  g(m∆x)∗δ(n)(x)  ;  (m = 0, ±1, ±2, …, ±∞)         (III.6b) 
 

 



 67

IIIIII..22  RReessoolluuttiioonn  ooff  tthhee  eeqquuaattiioonnss  
 
 

To simplify this essay, we shall restrict ourselves to mono-
variable equations.  
 

III.2.1 Algebraic equations  
 

Equation lacking a second member :  
 

Consider the equation : 
 

g(x)(x - ξ1)(x - ξ2)…(x - ξK)  =  0  ;  g(x)  ≠  0          (III.7a) 
 

This permits the following solutions : 
  

    g(x)  =  a1 δ(x - ξ1), a2 δ(x - ξ2), …, aK δ(x - ξK)          (III.7b) 
 

in which a1, a2, …, aK are arbitrary constants in the absence of the 
initial conditions. The latter must correspond to points  ξ1, ξ2, … and 
be limited in number to K. 

 

In digital form, the arbitrary constants are predictable. They 
are assigned the default unit where the initial conditions are lacking. 
In this order, the equation (III.7b) is written :  

 

g(m∆x)  =  δ(x - m1∆x), δ(x - m2∆x), …, δ(x - mK∆x)    (III.7c) 
 

Two-member equation :  
 

Let :  g(x)(x - ξ1)(x - ξ2)…(x - ξK)  =  p(x)            (III.8a) 
 

 It can be seen that where  x = ξ1 or  x = ξ2 …, the equation 
loses its second member :  
 

   p(x)  �  0  and  g(x)  =  a1 δ(x - ξ1), a2 δ(x - ξ2), …, aK δ(x - ξK)   
 

Outside the points  ξ1, ξ2 , …, this produces : 
 

g(x)  = 
)ξ - x)...(ξ - x)(ξ - x(

)x(p

K21
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In the same way, the general solution of the equation (III.8a) 
produces the following result :  

g(x)  =  a1δ(x - ξ1), a2 δ(x - ξ2), …, aK δ(x - ξK), 
)ξ - x)...(ξ - x)(ξ - x(

)x(p

K21

  

 

                (III.8b)  
The digital version of this equation is written :  

 

g(m∆x)  =  δ(x - m1∆x), …, δ(x - mK∆x), 
)xm - x)...(xm - x(

)xm(p

K1 ∆∆
∆

 

 

                (III.8c) 
 

III.2.2 Differential equations 
 

General form :  
 

A linear differential equation is expressed as : 
 

pn(x) 
n

n

dx
)x(gd

 + pn-1(x) 
1n

1n

dx
)x(gd

−

−

 + … + p1(x) 
dx

)x(dg  +  

 po(x) g(x)  =  p(x)                 (III.9)
      

where  pn(x), …, po(x)  and p(x) are known functions. It is fascinating 
to recall that the origin of this equation lies in physics, all of the 
components being locally integrable.  
 

The digitisation of (III.9) results from the substitution :  
 

x  �  m∆x   ;   (m = 0, ±1, ±2, …, ±∞) 
 

Resolution schematic :  
 

The equation (III.9) can be solved in four stages :  
 

1) Digitising the equation by determining  ∆x  and  M ; 
 

2) Applying TF (see A.6) to all its members ; 
 

3) Separating the knowns from the unknowns ; 
 

4) Proceeding to TF-1. 
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Example :  
 

For the sake of simplicity, let us make do with a 2nd degree 
equation :  

 p2(x) 
²dx

)x(g²d  + p1(x) 
dx

)x(dg  + po(x) g(x)  =  p(x)           (III.10a) 
 

The digitisation thereof for a terminated interval produces :  
 

p2(m∆x) 
²dx

)xm(g²d ∆  + p1(m∆x) 
dx

)xm(dg ∆  +  

po(m∆x) g(m∆x)  =  p(m∆x)  ;  (m = 0, 1, 2, …, M)  
 

The application TF produces :  
 

p2(w∆f)∗[(j2πw∆f)² g(w∆f)] + p1(w∆f)∗[(j2πw∆f) g(w∆f)] +  
 

po(w∆f)∗g(w∆f)  =  p(w∆f)  ;  (w = 0, 1, 2, …, W)  � 
 

∆f ∑
=

W

0 k 

g[(w - k)∆f]  {p2(k∆f) [j2π(w - k)∆f]² + p1(k∆f) [j2π(w - k)∆f] 

+ po(k∆f)}  =  p(w∆f)  ;  (w = 0, 1, 2, …, W)      (III.10b) 

 

The periodicity of  g(w)  in  W  enables the substitution :  
 

 g[(w - k)∆f]  �  g[(W + w - k)∆f]   where  w < k  
 

As a result, the variation of w in the equation (III.10b) 
generates an algebraic system, from W + 1 linear equations, 
containing unknowns(1)  W of the type  g(w∆f).  
 

The resolution of the latter results in the functions g(w∆f) 
which with the help of TF-1, serve to reconstruct the function  g(m∆x). 
 

Example of calculation :  
 

Let  ∆f {p2(k∆f) [j2π(w - k)∆f]² + P1(k∆f) [j2π(w - k)∆f] +   
 

po(k∆f)}  =  φφφφ(w∆f, k∆f)  
 

____________________________________________________________________ 
(1)  Because the continuity of  g(f)  implies :  g(0)  =  g(W).  
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The following is deduced for :  
 

w = 0 :  
 

    g(0) φφφφ(0, 0) + g[(W - 1)∆f] φφφφ(0, ∆f) + … + g(0) φφφφ(0, W∆f)  =  p(0) 
 

w = 1 :  
  

    g(∆f) φφφφ(∆f, 0) + g(0) φφφφ(∆f, ∆f) + … + g(∆f) φφφφ(∆f, W∆f)  =  p(∆f) 
    . 
    . 
    . 
 

w = W :  
  

    g(W∆f) φφφφ(W∆f, 0) + g[(W - 1)∆f] φφφφ(W∆f, ∆f) + … +  
 

                           g(0) φφφφ(W∆f, W∆f)  =  p(W∆f) 
 

Remembering that  g(W∆f)  =  g(0)  and  p(W∆f)  =  p(0).  
 

This system is finally shown as :  
 

    c00 g(0) + c01 g(∆f) + … + c0(W-1) g[(W - 1)∆f)]  =  p(0)  
  

     c10 g(0) + c11 g(∆f) + … + c1(W-1) g[(W - 1)∆f)]  =  p(∆f) 
         . 
         .                        (III.10c) 
         . 
     c(W-1)0 g(0) + c(W-1)1 g(∆f) + … +  
 

            c(W-1) (W-1) g[(W - 1)∆f)]   =  p[(W - 1)∆f)] 
   

     cW0 g(0) + cW1 g(∆f) + … + cWW g[(W - 1)∆f)]   =  p(0)    
 

in which  cwi  are numbers.  
   

Special case :  
 

For p(m∆x) = 0, the system (III.10c) accepts non-trivial 
solutions since two, and only two, of its equations (the first and last) 
are linearly dependent.  
 
 
 
 


